So I'm assuming you want a matrix B such that a known matrix A when multiplied by B can commute, that is AB=BA. The idea is to set up a system of linear equations with all of your unknowns. First we have to specify the unknowns. If B is a 3X3 matrix then we will have a matrix containing a,b,c,d,e,f,g,h,i where these letters are the unknowns representitive of the coefficients in the B matrix. Next you want to multiply A times B, and B times A, which should give you 18 different equations. We want to treat a,b,c, etc. as if they were x1, x2, x3, etc. Remember AB=BA, which means AB - BA = 0. Now you can set up and solve for a linear system using elementary row operations. Once the linear system is in reduced row echelon form, you will see the conditions for AB=BA. I hope that helps.