How to Maximize the Volume of a Cylinder with a Given Perimeter?

Click For Summary

Discussion Overview

The discussion revolves around maximizing the volume of a cylinder formed from a rectangle with a given perimeter of 400 cm. Participants explore different interpretations of the problem, including fixed dimensions and variable dimensions, and present various mathematical approaches to derive the volume function.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a method to express the volume of the cylinder as a function of the radius, leading to a derivative that needs further exploration to find the maximum volume.
  • Another participant suggests calculating the volume using specific dimensions derived from the rectangle's perimeter, providing two volume equations based on different interpretations of the dimensions.
  • A third participant interprets the problem as rolling a sheet of paper into a cylinder, indicating that this interpretation may require additional steps to solve.
  • A fourth participant introduces a semi-perimeter approach, deriving a volume function based on the length and height of the rectangle, and discusses critical points for optimization.

Areas of Agreement / Disagreement

Participants present multiple competing views on how to approach the problem, with no consensus on the best method or interpretation of the dimensions involved.

Contextual Notes

Some assumptions about the dimensions and the nature of the rectangle are not explicitly stated, leading to different interpretations of the problem. The mathematical steps presented by participants may depend on specific definitions and conditions that are not fully resolved.

Noah1
Messages
21
Reaction score
0
it is given that the perimeter of the rectangle is (80 + 120 + 80 + 120) = 400 cm From this you need to make a cylinder with maximin volume:
400 = 2r + 2h
2h = 400 - 2r
h = 200 - r .
We wish to MAXIMIZE the total VOLUME of the resulting CYLINDER
V = πr^2 h
However, before we differentiate the right-hand side, we will write it as a function of r only. Substitute for h getting
V = πr^2 h
V = πr^2 (200-r)
V = π(200r^2-r^3 )
Now differentiate this equation, getting
V’ = π(200r^2-r^3 )
V’ = π(400r-3r^2 )

- - - Updated - - -

Noah said:
it is given that the perimeter of the rectangle is (80 + 120 + 80 + 120) = 400 cm From this you need to make a cylinder with maximin volume:
400 = 2r + 2h
2h = 400 - 2r
h = 200 - r .
We wish to MAXIMIZE the total VOLUME of the resulting CYLINDER
V = πr^2 h
However, before we differentiate the right-hand side, we will write it as a function of r only. Substitute for h getting
V = πr^2 h
V = πr^2 (200-r)
V = π(200r^2-r^3 )
Now differentiate this equation, getting
V’ = π(200r^2-r^3 )
V’ = π(400r-3r^2 )

At this point I don't know where to go from here to solve for r
 
Physics news on Phys.org
If the dimensions of the rectangle are already given, then we only have 2 choices:

$$V_1=\pi\left(\frac{80}{2\pi}\right)^2120$$

$$V_2=\pi\left(\frac{120}{2\pi}\right)^280$$
 
Noah said:
It is given that the perimeter of the rectangle is 400 cm.
From this you need to make a cylinder with maximin volume:
I interpret this problem as follows:

There is a sheet of paper with a perimeter of 400 cm.
We will "roll" the sheet into a cylinder.
Find the dimensions of the paper which produces the cylinder of maximum volume.

This version requires a bit more work . . .


 
If we are free to choose the dimensions of the rectangle, so long as the perimeter is a certain value, then consider the diagram:

http://www.ekshiksha.org.in/Image_Surface_Areas_and_Volumes_IX/8.png

Let $S$ be the semi-perimeter (a constant), so that we have:

$$l+h=S$$

The volume of the resulting cylinder is:

$$V=\pi\left(\frac{l}{2\pi}\right)^2h=\frac{1}{4\pi}l^2h$$

At this point we may choose which of the variables we wish to replace, and since $l$ is being squared, for simplicity let's replace $h$:

$$V=\frac{1}{4\pi}l^2(S-l)=\frac{1}{4\pi}\left(Sl^2-l^3\right)$$

Hence, we now have the volume as a function of one variable $l$:

$$V(l)=\frac{1}{4\pi}\left(Sl^2-l^3\right)$$

We may ignore the constant $$\frac{1}{4\pi}$$ and simply optimise:

$$f(l)=Sl^2-l^3$$

So, taking the first derivative, and equating to zero, we obtain:

$$f'(l)=2Sl-3l^2=l\left(2S-3l\right)=0$$

From this, we obtain the two critical values:

$$l=0,\,\frac{2S}{3}$$

Now, if we utilize the second derivative test, on computing $f''$, we obtain:

$$f''(l)=2S-6l$$

And we find:

$$f''(0)=2S>0$$ This critical value is at a relative minimum.

$$f''\left(\frac{2S}{3}\right)=-2S<0$$ This critical value is at a relative maximum.

So, in order to maximize the volume of the cylinder, we require:

$$l=\frac{2S}{3}$$

$$h=\frac{S}{3}$$

Does that make sense?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
9
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K