Telemachus
- 820
- 30
Hi there. Well, in the next exercise I must find the limit of \displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(xy)-1}{x}}, if it exists. I want to know if I did it right.
If y=cx
\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(xy)-1}{x}}=\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(cx^2)-1}{x}}=\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{-\sin(cx^2)2cx-1}{1}}=-1
If x=cy
\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(cy^2)-1}{cy}}=\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{-\sin(cy^2)2cy-1}{cy}}=-\displaystyle\frac{1}{c}
\therefore{\not{\exists}}\textsf{double limit}
So, what you say?
By there, and thanks for posting.
PD: Ok, Now I see, after plotting with wolfram, some calculus errors I've committed. The limit actually seems exists. So I should use the delta epsilon definition of limits to make a demonstration.
If y=cx
\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(xy)-1}{x}}=\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(cx^2)-1}{x}}=\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{-\sin(cx^2)2cx-1}{1}}=-1
If x=cy
\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{\cos(cy^2)-1}{cy}}=\displaystyle\lim_{(x,y) \to{(0,0)}}{\displaystyle\frac{-\sin(cy^2)2cy-1}{cy}}=-\displaystyle\frac{1}{c}
\therefore{\not{\exists}}\textsf{double limit}
So, what you say?
By there, and thanks for posting.
PD: Ok, Now I see, after plotting with wolfram, some calculus errors I've committed. The limit actually seems exists. So I should use the delta epsilon definition of limits to make a demonstration.
Last edited: