I'll deal just with molecular gases, not photons. The molecular gas treatment can be adapted to photons as explained earlier.
1. Dividing by the time for a collision to take place would give you the mean force exerted by a molecule on the wall when it's colliding. But that's not what you want. You need the mean force on the wall all the time, whether or not a molecule is in the process of colliding.
2. I'm not fond of the derivation you give, though it was the standard one given to A-Level students in the UK, in the days when exam boards still required a derivation to be known. Students, quite reasonably, disliked the restriction of the cuboidal container, and the notion of a molecule bouncing back and forth between opposite walls, unimpeded by other molecules.
The derivation in the thumbnails below is, in my opinion, far superior. It is my version of a derivation I first met in a very old book, The Kinetic Theory of Gases by Sir James Jeans. Note that, in the thumbnails, I'm using u to mean x-wise velocity component, not energy per unit volume!
If you're happy with a bit of integration, there's another version of the Jeans argument which you might prefer. It deals differently with the 'grouping' of molecules by velocity.