How to Show Average Energy at Low Temperatures?

AI Thread Summary
The discussion focuses on deriving the average energy of a two-level system at low temperatures, specifically when kT is much less than the energy difference (deltaE) between the levels. The average energy formula is given, and participants clarify the application of the first-order expansion for small values. A mistake is identified in the initial calculations regarding the denominator, leading to confusion about the treatment of the variable x. The key takeaway is that higher-order terms can be ignored in this limit, simplifying the expression to E1 + deltaE*e^(-B*deltaE). The importance of maintaining only first-order terms in the expansion is emphasized for accuracy in the final result.
shayan825
Messages
16
Reaction score
0
A system has two non-degenerate energy levels E1 and E2, where E2>E1>0. The system is at tempreture T. The Average energy of the system is = E1+E2e^(-B*deltaE) / 1+e^(-B*deltaE) where deltaE= E2 -E1 and B=1/kT (k=Boltzmann constant). show that for very low temperatures kT<<deltaE, average energy= E1+deltaE*e^(-B*deltaE).

hint: use the first order expansion (1+x)^-1=1-x for x<<1
keep terms up to first order only

Here is what I get:

I multiplied 1-e^(-B*deltaE) by E1+E2e^(-B*deltaE) based on (1+x)^-1=1-x and I get E1+deltaE*e^(-B*deltaE) + E2*e^(-2B*deltaE), but it is not the answer

Help would be appreciated
 
Physics news on Phys.org
You are told: $$\bar E = \frac{E_1+E_2 e^{-(E_2-E_1)/kT}}{1-e^{-(E_2-E_1)/kT}}$$ ... and you need to find this in the limit that ##kT<<E_2-E_1##

You did: $$(1-e^{-(E_2-E_1)/kT})(E_1+E_2 e^{-(E_2-E_1)/kT})$$ because ##(1+x)^{-1}\simeq 1-x## for ##x<<1## ... ??!

What are you treating as "x" in that expression?
What is your reasoning?
 
Simon Bridge said:
You are told: $$\bar E = \frac{E_1+E_2 e^{-(E_2-E_1)/kT}}{1-e^{-(E_2-E_1)/kT}}$$ ... and you need to find this in the limit that ##kT<<E_2-E_1##

You did: $$(1-e^{-(E_2-E_1)/kT})(E_1+E_2 e^{-(E_2-E_1)/kT})$$ because ##(1+x)^{-1}\simeq 1-x## for ##x<<1## ... ??!

What are you treating as "x" in that expression?
What is your reasoning?

I did it based on the equation (1+x)^-1=1-x. Therefore, (1+e^-BdeltaE)^-1 is equal to 1-e^-BdeltaE. The denominator is (1+e^-BdeltaE) and not (1-e^-BdeltaE) . I made a mistake, sorry.
 
shayan825 said:
keep terms up to first order only
This is the part you forgot.
 
DrClaude said:
This is the part you forgot.

what should I do? could you please help?
 
You have
$$
\frac{f(x)}{1+x} \approx (1-x) f(x)
$$
Then do the multiplication, and keep only terms up to first order.
 
hint: the "order" is determined by the power of x.

I did it based on the equation (1+x)^-1=1-x. Therefore, (1+e^-BdeltaE)^-1 is equal to 1-e^-BdeltaE.
So x=e^-BdeltaE right?

Your answer was:
E1+deltaE*e^(-B*deltaE) + E2*e^(-2B*deltaE)

... in terms of x, that is: E1 + deltaE x + E2 x^2

The answer you want is:
E1+deltaE*e^(-B*deltaE) = E1 + deltaE x

compare.
 
Simon Bridge said:
hint: the "order" is determined by the power of x.


So x=e^-BdeltaE right?

Your answer was:
E1+deltaE*e^(-B*deltaE) + E2*e^(-2B*deltaE)

... in terms of x, that is: E1 + deltaE x + E2 x^2

The answer you want is:
E1+deltaE*e^(-B*deltaE) = E1 + deltaE x

compare.

So, I just take E2 x^2 from the equation? or there is more to it? Thank you for your help
 
Yep: that's all there is to it.

The idea is that if x is small enough to make the binomial approximation (which is what you did), then x^2 is way wayy too small to have a noticeable effect. It is safe to just ignore it. i.e. imagine x~0.00001... at that sort of scale the equations x^2+x+1 and x+1 are hard to tell apart.
 
Back
Top