- 6,735
- 2,431
Homework Statement
evaluate
\int_{c} | z - 1 | |dz|
where c is the positive oriented unit circle.
Homework Equations
The Attempt at a Solution
| z - 1 | = \left[ ( z-1)( \overline{z} - 1 ) \right] ^{1/2} = \left[ |z|^{2} - z - \overline{z} +1 \right] ^{1/2}
c : z(t) = e^{it} ; 0 \leqslant t \leqslant 2\pi
|dz| = dt
|z| = 1
\int_{c} | z - 1 | |dz| = \int_{0} ^{2 \pi} (2 - e^{it} - e^{-it}) ^{1/2} dt
\int_{0} ^{2 \pi} \sqrt{2-2 \cos t } dt
Is this right so far? What to do next? :S
Last edited: