How to Solve a Limit Question for Series Objects | Step-by-Step Guide

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Limit
transgalactic
Messages
1,386
Reaction score
0
[SOLVED] limit question

i added a file with the question and how i tried to find the legality between the
objects of the series

lim [1/(1*2) + 1/(2*3) + 1/(3*4) + ... + 1/(n*(n+1))]
n>>infinity


i can't find the total sum of all the objects in the series

if i would get the total sum of all the objects
i can get the limit

i could add the first numbers and to make an estimation about the limit
but how i solve it in equetions??
 

Attachments

  • 5.JPG
    5.JPG
    5.9 KB · Views: 371
Last edited:
Physics news on Phys.org
Does this help?

\frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}
 
i got

lim 1- [1/(n-1)] =1
n>>infinity


thanks
 
Last edited:
The limit is indeed 1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top