brainstorm said:
... some average frequency.
No. There is no physical "average" frequency. There are still two, the same two as before.
brainstorm said:
So white light may actually be comparable to combining all notes between Cs in equal proportions?
Almost. This is how an LCD monitor produces white, with a few distinct frequencies that together fool our brain into thinking it's white. In this sense, our brain does an "average", but it's not a mathematical average in the common sense, it's "sensory", beyond the scope of physics and mostly neuropsychological IMO.
True white would be a continuous spectrum that would include the infinity of frequencies in the visible range. The analogous sound "white" would contain all frequencies between 20Hz and 20000Hz, it would be perceived as noise, perhaps the background noise in a city or in a crowd are examples.
brainstorm said:
So what is the difference if you combine red, green, and blue to make white or all the colors together? Do you get different whites? Also, how do you know a particular frequency of red isn't 5 different waves of very similar frequency?
You can get whites with a tint of each color, pale pink, blue pale, different shades etc. Look at a color chart where they sell paint. Or better go to the menu where you can set the colors of your computer screen. All these tints are made up of only a few wavelengths (I think it's 3 : RGB). A particular frequency of real-life red could very well be made up of 5 similar but distinct frequencies. But this doesn't change a thing in everyday life. Most of the colors we see are indeed a mix of many frequencies. While traveling they are superposed and distinct, but when the reach our eyes, the brain makes an "average" (non-mathematical) as you say.
brainstorm said:
Thanks, this is interesting. What I am really interested in, though, is how the various forms of radiation outside the visible spectrum could combine and interact with each other.
If you are only looking at waves, it's exactly the same physics for wavelengths. Interference is practically the only effect that can happen between two waves in the absence of matter. No matter how complex the equations can be, it's always just superposition.
Wavelength only matters in relation to matter. This however can give rise to a host of effects that are subdivided in the many fields of physics.