transgalactic
- 1,386
- 0
part A(i managed to solve it):
X is a variable of M_{3X3}
<br /> D=\bigl(\begin{smallmatrix}<br /> \lambda_1 &0 &0 \\ <br /> 0 & \lambda_2& 0\\ <br /> 0&0 &\lambda_3 <br /> \end{smallmatrix}\bigr)<br />
where
\lambda_1,\lambda_2,\lambda_3 are different rational numbers.
solve XD=DX for X.
solution:
<br /> \bigl(\begin{smallmatrix}<br /> x_{11}& x_{12} & x_{13}\\ <br /> x_{21}&x_{22} &x_{23} \\ <br /> x_{31}&x_{32} &x_{33} <br /> \end{smallmatrix}\bigr)\bigl(\begin{smallmatrix}<br /> \lambda_1 &0 &0 \\ <br /> 0 & \lambda_2& 0\\ <br /> 0&0 &\lambda_3 <br /> \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}<br /> \lambda_1 &0 &0 \\ <br /> 0 & \lambda_2& 0\\ <br /> 0&0 &\lambda_3 <br /> \end{smallmatrix}\bigr)\bigl(\begin{smallmatrix}<br /> x_{11}& x_{12} & x_{13}\\ <br /> x_{21}&x_{22} &x_{23} \\ <br /> x_{31}&x_{32} &x_{33} <br /> \end{smallmatrix}\bigr)<br />
so i get
<br /> \bigl(\begin{smallmatrix}<br /> x_{11}\lambda_1& x_{12}\lambda_2 & x_{13}\lambda_3\\ <br /> x_{21}\lambda_1&x_{22}\lambda_2 &x_{23}\lambda_3 \\ <br /> x_{31}\lambda_1&x_{32}\lambda_2 &x_{33}\lambda_3 <br /> \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}<br /> x_{11}\lambda_1& x_{12}\lambda_1 & x_{13}\lambda_1\\ <br /> x_{21}\lambda_2&x_{22}\lambda_2 &x_{23}\lambda_2 \\ <br /> x_{31}\lambda_3&x_{32}\lambda_3 &x_{33}\lambda_3 <br /> \end{smallmatrix}\bigr)
so for both side to be equal X must be of diagonal structure
every member must be zero except the diagonal
because the lambda values are given as different.
part B(the one that i don't understand):
<br /> A=\bigl(\begin{smallmatrix}<br /> 13& -42 & 0\\ <br /> 7&-22 &0\\ <br /> 0&0&3 <br /> \end{smallmatrix}\bigr)
what is the solution space of XA=AX (use part A)??
i tried
XA=AX
XPDP^-1=PDP^-1X (multiplying by p from the right)
XPDP^-1P=PDP^-1XP
XPD=PDP^-1XP (multiplying by p^-1 from the left)
P^-1XPD=P^-1PDP^-1XP
P^-1XPD=DP^-1XP
another thing i could find is the eigen values of the matrix
i got
\lambda_1=-1 and \lambda_2=-8
and \lambda_3=3
P^-1AP=\bigl(\begin{smallmatrix}<br /> -1& 0 & 0\\ <br /> 0&-8 &0\\ <br /> 0&0&3 <br /> \end{smallmatrix}\bigr)
i can substitute A by X but what's to do next??
X is a variable of M_{3X3}
<br /> D=\bigl(\begin{smallmatrix}<br /> \lambda_1 &0 &0 \\ <br /> 0 & \lambda_2& 0\\ <br /> 0&0 &\lambda_3 <br /> \end{smallmatrix}\bigr)<br />
where
\lambda_1,\lambda_2,\lambda_3 are different rational numbers.
solve XD=DX for X.
solution:
<br /> \bigl(\begin{smallmatrix}<br /> x_{11}& x_{12} & x_{13}\\ <br /> x_{21}&x_{22} &x_{23} \\ <br /> x_{31}&x_{32} &x_{33} <br /> \end{smallmatrix}\bigr)\bigl(\begin{smallmatrix}<br /> \lambda_1 &0 &0 \\ <br /> 0 & \lambda_2& 0\\ <br /> 0&0 &\lambda_3 <br /> \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}<br /> \lambda_1 &0 &0 \\ <br /> 0 & \lambda_2& 0\\ <br /> 0&0 &\lambda_3 <br /> \end{smallmatrix}\bigr)\bigl(\begin{smallmatrix}<br /> x_{11}& x_{12} & x_{13}\\ <br /> x_{21}&x_{22} &x_{23} \\ <br /> x_{31}&x_{32} &x_{33} <br /> \end{smallmatrix}\bigr)<br />
so i get
<br /> \bigl(\begin{smallmatrix}<br /> x_{11}\lambda_1& x_{12}\lambda_2 & x_{13}\lambda_3\\ <br /> x_{21}\lambda_1&x_{22}\lambda_2 &x_{23}\lambda_3 \\ <br /> x_{31}\lambda_1&x_{32}\lambda_2 &x_{33}\lambda_3 <br /> \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}<br /> x_{11}\lambda_1& x_{12}\lambda_1 & x_{13}\lambda_1\\ <br /> x_{21}\lambda_2&x_{22}\lambda_2 &x_{23}\lambda_2 \\ <br /> x_{31}\lambda_3&x_{32}\lambda_3 &x_{33}\lambda_3 <br /> \end{smallmatrix}\bigr)
so for both side to be equal X must be of diagonal structure
every member must be zero except the diagonal
because the lambda values are given as different.
part B(the one that i don't understand):
<br /> A=\bigl(\begin{smallmatrix}<br /> 13& -42 & 0\\ <br /> 7&-22 &0\\ <br /> 0&0&3 <br /> \end{smallmatrix}\bigr)
what is the solution space of XA=AX (use part A)??
i tried
XA=AX
XPDP^-1=PDP^-1X (multiplying by p from the right)
XPDP^-1P=PDP^-1XP
XPD=PDP^-1XP (multiplying by p^-1 from the left)
P^-1XPD=P^-1PDP^-1XP
P^-1XPD=DP^-1XP
another thing i could find is the eigen values of the matrix
i got
\lambda_1=-1 and \lambda_2=-8
and \lambda_3=3
P^-1AP=\bigl(\begin{smallmatrix}<br /> -1& 0 & 0\\ <br /> 0&-8 &0\\ <br /> 0&0&3 <br /> \end{smallmatrix}\bigr)
i can substitute A by X but what's to do next??
Last edited: