How we see image inside the concave mirror when object is beyond C?

AI Thread Summary
When an object is placed beyond the center of curvature (C) of a concave mirror, a real and inverted image is formed between C and the focal point (F). Observing the mirror directly without a screen reveals an inverted image that appears to be inside the mirror, which can be explained using ray diagrams. These diagrams illustrate that depending on the object's position, both real and virtual images can be formed. The discussion also touches on similar principles applicable to convex lenses and the limitations of concave lenses and convex mirrors, which only produce one type of image. Understanding these concepts requires careful analysis of ray diagrams to clarify the nature of the images produced.
Deepak Singh Ola
Messages
2
Reaction score
1
In concave mirror, when object is beyond C ( centre of curvature) our traditional Ray diagrams show a real and inverted image formed between C and F. But at the same time, if we look directly into the mirror and remove the screen, we see an inverted image which appears to be inside the mirror. Explain this image using Ray diagram.
 

Attachments

  • IMG_20190822_143412.jpg
    IMG_20190822_143412.jpg
    33.6 KB · Views: 330
Science news on Phys.org
Hi and welcome to Physics Forums.
I am not sure what your question is - and what is "the screen"?
Have you tried a Google search for "Concave Mirror Ray diagram"? There is no point in my giving you a home made ray diagram when there are thousands available on the Web but you will notice something about concave mirrors. Depending on where the object is relative to the mirror centre of curvature (object distance and r) you can get a real image 'inside' the mirror or a virtual image behind the mirror. If the object is at the centre of curvature, all rays from the object will come back and hit the object.

This effect is also obtainable with a convex Lens, where either a real or virtual image can be formed. Again, Google (Images) is your friend.

With convex mirrors or concave lenses, there is only one image is formed, wherever the object is.

PS I don't agree with your diagram showing an inverted image behind the mirror. Google will put you right. (Thy Hyperphysics website)
 
IMG_20190822_141842.jpg


This is the ray diagram of this situation... This explains the real image formed outside the mirror... But when we look into the mirror and as you said, real image can be seen inside the mirror and it's true.. but how to explain this image inside the mirror Using ray diagram?
 
Thread 'Simple math model for a Particle Image Velocimetry system'
Hello togehter, I am new to this forum and hope this post followed all the guidelines here (I tried to summarized my issue as clean as possible, two pictures are attached). I would appreciate every help: I am doing research on a Particle Image Velocimetry (PIV) system. For this I want to set a simple math model for the system. I hope you can help me out. Regarding this I have 2 main Questions. 1. I am trying to find a math model which is describing what is happening in a simple Particle...
I would like to use a pentaprism with some amount of magnification. The pentaprism will be used to reflect a real image at 90 degrees angle but I also want the reflected image to appear larger. The distance between the prism and the real image is about 70cm. The pentaprism has two reflecting sides (surfaces) with mirrored coating and two refracting sides. I understand that one of the four sides needs to be curved (spherical curvature) to achieve the magnification effect. But which of the...
Back
Top