Hydrogen Atom Hamiltonian & Schroedinger Equation

maria clara
Messages
56
Reaction score
0
the Hamiltonian for the hydrogen atom appears as

H= (Pr)^2/2m+(L^2)/2mr^2-e^2/r

The Schroedinger equation is

((Pr)^2/2m+(L^2)/2mr^2-Ze^2/r+|E|)PHI=0

|E| because we're looking for bound states.

m - reduced mass.

the radial equation is

{(-h/2m)[(1/r)(d^2/dr^2)r]+h^2l(l+1)/2mr^2-e^2/r+|E|}R(r)=0

(h denotes h-bar)

we change the the dependent variable to u=rR(r)

and we get

(-d^2/dr^2+l(l+1)/r^2-(2m/h^2)(e^2/r)+2m|E|/h^2)u=0

I don't understand how exactly the last equation is obtained. By the change u=rR, shouldn't we get the factor 1/r inside the brackets?
 
Last edited:
Physics news on Phys.org
Maria,

In your first equation (the "Radial Equation"), you have 1/r in the first term - why not multiply both sides (or, just the left side, since the right side is just equal to zero) by r? This way, you get rid of the r in the first term, and when you distribute out the R(r) you can then make the substitution for U(r)=rR(r) (The "Radial Function"). At this point, most authors make the following substitution

V_{eff}=\frac{l(l+1)\hbar^2}{2mr^2}-\frac{e^2}{4\pi\epsilon_0 r}

which simplifies things a bit. Of course, you'll have to substitute this back in eventually, however it may make it easier to see things temporarily. Additionally, following this it becomes convenient to make the following substitution

\rho=\frac{\sqrt{8m|E|}r}{\hbar}

The math that follows this is really quite messy, however none of it is particularly difficult.
 
thank you(:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top