matematikuvol
- 190
- 0
Homework Statement
Calculate
_2F_1(\frac{1}{2},\frac{1}{2},\frac{3}{2};x)
Homework Equations
_2F_1(a,b,c;x)=\sum^{\infty}_{n=0}\frac{(a)_n(b)_n}{n!(c)_n}x^n
(a)_n=a(a+1)...(a+n-1)
The Attempt at a Solution
(\frac{1}{2})_n=\frac{1}{2}\frac{3}{2}\frac{5}{2}...\frac{2n-1}{2}
(\frac{3}{2})_n=\frac{3}{2}\frac{5}{2}\frac{7}{2}...\frac{2n+1}{2}
From this relations
\frac{(\frac{1}{2})_n}{(\frac{3}{2})_n}=\frac{1}{2n+1}
But I don't see how to calculate this to the end...