I am Imran, a retired Electrical Engineer with a QM question

ImranM098
Messages
1
Reaction score
0
Hi ,
Could somebody explain how to DERIVE the canonical postulate [Xcap,Pcap]=ihbar ? The idea of Pcap operator's origin as -ihbar d/dx also is found puzzling .
 
Physics news on Phys.org
Welcome to PF.
The canonical commutator ##[x, p] = i\hbar## can be derived with basic calculus (the product rule). We apply the operators x and p to a wave function f(x) in different orders and compare

$$px\,f(x) = -i\hbar \frac{\partial}{\partial x} x f(x) = -i\hbar (1+ x\frac{\partial}{\partial x}f(x) ) = (-i\hbar + xp)f(x)$$

Since f(x) is arbitrary, we have determined

$$px = -i\hbar + xp$$
$$[x,p] = xp - px = i\hbar$$

The origin of ##p= -i\hbar \frac{\partial}{\partial x}## can be understood by considering its action on plane waves. If we have a plane wave ##e^{ikx}##, then applying the momentum operator ##p## extracts a factor of k (k is called a wavenumber which is spatial frequency)

$$-i\hbar \frac{\partial}{\partial x}e^{ikx} = -i\cdot i \hbar k \cdot e^{ikx} = \hbar k\,e^{ikx}$$

So when you apply the momentum operator to a plane wave it returns the same function times a factor of momentum ##p=\hbar k##. So the momentum operator gives a factor of the momentum value when operating on a plane wave.
This enables you to write a differential equation that will satisfy a relationship between variables such as wavenumber k, frequency, or energy. For some differential equations you can cancel the function on both sides of the equation and be left with an algebraic equation in terms of variables like frequency and energy. This is basically how Schrodinger arrived at his famous equation.
 
Last edited:
  • Like
Likes Nugatory, Mentz114, fresh_42 and 2 others
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top