I am Imran, a retired Electrical Engineer with a QM question

ImranM098
Messages
1
Reaction score
0
Hi ,
Could somebody explain how to DERIVE the canonical postulate [Xcap,Pcap]=ihbar ? The idea of Pcap operator's origin as -ihbar d/dx also is found puzzling .
 
Physics news on Phys.org
Welcome to PF.
The canonical commutator ##[x, p] = i\hbar## can be derived with basic calculus (the product rule). We apply the operators x and p to a wave function f(x) in different orders and compare

$$px\,f(x) = -i\hbar \frac{\partial}{\partial x} x f(x) = -i\hbar (1+ x\frac{\partial}{\partial x}f(x) ) = (-i\hbar + xp)f(x)$$

Since f(x) is arbitrary, we have determined

$$px = -i\hbar + xp$$
$$[x,p] = xp - px = i\hbar$$

The origin of ##p= -i\hbar \frac{\partial}{\partial x}## can be understood by considering its action on plane waves. If we have a plane wave ##e^{ikx}##, then applying the momentum operator ##p## extracts a factor of k (k is called a wavenumber which is spatial frequency)

$$-i\hbar \frac{\partial}{\partial x}e^{ikx} = -i\cdot i \hbar k \cdot e^{ikx} = \hbar k\,e^{ikx}$$

So when you apply the momentum operator to a plane wave it returns the same function times a factor of momentum ##p=\hbar k##. So the momentum operator gives a factor of the momentum value when operating on a plane wave.
This enables you to write a differential equation that will satisfy a relationship between variables such as wavenumber k, frequency, or energy. For some differential equations you can cancel the function on both sides of the equation and be left with an algebraic equation in terms of variables like frequency and energy. This is basically how Schrodinger arrived at his famous equation.
 
Last edited:
  • Like
Likes Nugatory, Mentz114, fresh_42 and 2 others
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top