I cant visualize/understand this convergence proof

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Convergence Proof
transgalactic
Messages
1,386
Reaction score
0
for an alternative definition

lim inf (x_n) = inf {x: infinitely many x_n are < x }

lim sup (x_n) = sup {x: infinitely many x_n are > x }.

Now if both are equal to p, then consider a neighbourhood (p-e, p+e) of p (for some e>0).
As y:= p+ e/2 > p we cannot have that infinitely many x_n are > y (otherwise lim sup (x_n) >= y > p)
So at most finitely many x_n are > y, and almost all x_n are <= y < p+e.
Similarly with y' = y - e/2 and liminf: almost all x_n are >= y' > p-e.
So there is some N such that n >= N implies that x_n is in (p-e, p+e).

As e>0 was arbitrary x_n -- > x.

The reverse is similar, suppose x_n --> x.
If p > x, then there is some n such that x_n < p for all n >= N.
So p is NOT in the set B := {x: infinitely many x_n > x } so
B subset {t: t <= x} and so lim sup x_n = sup B <= x.
If p < x, then for all but finitely x_n, x_n >= p.
So p is not in A:= {t: infinitely many x_n < t} and so
A subset {t: t >= x } and so lim inf x_n = inf A >= x.
x <= liminf x_n <= limsup x_n <= x implies equality.
 
Physics news on Phys.org
What is it you do not understand?
 
this is how i see it:
lim inf Xn=p
lim Sup Xn=p
if we look at the neighborhood of (p-e, p+e) of p (for some e>0)

i can't understand this line
"As y:= p+ e/2 > p we cannot have that infinitely many x_n are > y (otherwise lim sup (x_n) >= y > p)"

whats y?
why are they doing p+ e/2 > p

"we cannot have that infinitely many x_n are > y"

whats y?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top