How Challenging Are These Trig Integration Problems?

  • Thread starter Thread starter xGrey
  • Start date Start date
  • Tags Tags
    Integration Trig
xGrey
Messages
1
Reaction score
0
the problems are:

1. (sec5x)^4 dx
2. (tan2x)^3*(sec2x)^3 dx
3. (tanx)^2 /secx dx
4. (tan (x/4))^5
 
Physics news on Phys.org
Welcome to PF!

Hi xGrey ! Welcome to PF! :wink:

Show us your attempts, and where you're stuck, and then we'll know how to help!

Start with 3. … use a trigonometric identity to simplify it. :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top