Identies: Sum And Difference, Double Angle hurry

AI Thread Summary
The discussion focuses on solving the trigonometric identity sin 3x = (sin x)(3-4sin^2 x). Participants suggest using identities such as sin(x+y) and sin(2x) to rewrite sin 3x for easier manipulation. The conversation emphasizes the importance of correctly applying trigonometric identities and not arbitrarily switching between sine and cosine. After several attempts and corrections, the user successfully factors out sin(x) to progress in the problem. The thread concludes with an invitation for further assistance on new homework questions.
emohunter7
Messages
19
Reaction score
0
I need some help with these kind of problems. I don't clearly understand how to solve them. Here is one...PLEASE HELP!

sin 3x = (sin x)(3-4sin^2 x) PROVE THEY ARE EQUAL
 
Last edited:
Physics news on Phys.org
emohunter7 said:
I need some help with these kind of problems. I don't clearly understand how to solve them. Here is one...PLEASE HELP!

sin 3x = (sin x)(3-4sin^2 x) PROVE THEY ARE EQUAL

You can use identities sin(x+y) = cos(x)sin(y) + sin(x)cos(y) and sin(2x) = 2sin(x)cos(x) for this. Merely write 3x slightly differently so that the use of these identities becomes more evident.
 
thank you...alright this one i am stuck on...i have been working on it for 10 minutes and can't come up with the answer.
2csc2x=(csc^2x)(tanx)
 
would the correct answer for my first problem be:
change sin3x to (sinx)(sin2x)
then change sin2x to 2sinxcosx
then change that to (2sinx)(2-2sinx)
then...i don't know...but am I on the right track??
 
emohunter7 said:
change sin3x to (sinx)(sin2x)

This is incorrect. Put sin(3x) = sin(x + 2x) instead.
 
okay thank you I will try that
 
alright as my next step I put (sinx)(cos2x)+(sin2x)(cosx)...is this correct?
 
do I then change the cos's to sin's?
 
emohunter7 said:
alright as my next step I put (sinx)(cos2x)+(sin2x)(cosx)...is this correct?

Yes. Perhaps you should attempt the entire problem and then post your solution instead of posting line by line.
 
  • #10
sorry I just need to know where I'm messing up.
 
  • #11
jostpuur said:
You can use identities sin(x+y) = cos(x)sin(y) + sin(x)cos(y) and sin(2x) = 2sin(x)cos(x) for this.

emohunter7 said:
do I then change the cos's to sin's?

Okey, my first advice wasn't flawless because I didn't notice that you need the formula for cos(2x) too. You cannot switch sines to cosines arbitrarily.
 
  • #12
so by using cos2x and sin2x formulas I should get (sinx)(1-2sin^2 x)+(2sinxcosx)(cosx)...right??
 
  • #13
emohunter7 said:
so by using cos2x and sin2x formulas I should get (sinx)(1-2sin^2 x)+(2sinxcosx)(cosx)...right??

Correct.
 
  • #14
then do I multiply the (2sinxcosx)(cosx) ?
 
  • #15
Rewrite what your problem is and what you want to solve starting from the beginning please.
 
  • #16
the problem is:
sin3x = (sinx)(3-4sin^2 x) ...PROVE THAT THEY ARE EQUAL
 
  • #17
Ok, show some work now.

(Im going to bed in 10 min, so type fast if you want help).
 
Last edited:
  • #18
ok...
first i split sin3x making sin(x+2x)
than i used the sum identity making (sinx)(cos2x)+(sin2x)(cosx)
then i used double angle identity making (sinx)(1-2sin^2 x)+(2sinxcosx)(cosx)
dunno what to do next
 
  • #19
Factor out a sin(x).
 
  • #20
i got it :) thanks!
new homework... will you help me with it if I have trouble?
 
  • #21
Feel free to post your question and your work on it.
 
  • #22
okay thank you
 
Back
Top