Identity for laplacian of a vector dotted with a vector

dakg
Messages
9
Reaction score
0

Homework Statement



I have $\int \nabla^2 \vec{u} \cdot \vec{v} dV$ where u and v are velocities integrated over a volume. I want to perform integration by parts so that the derivative orders are the same. This is the Galerkin method.

Homework Equations


The Attempt at a Solution



I have found identities involving $\nabla \vec{u}$ and $\nabla \vec{v}$ as a tensor scalar product and I have tried to work out a product rule:
$\nabla \cdot (\vec{v} \cdot \nabla \vec{u}) = \nabla \vec{u} : \nabla \vec{v} = \nabla^2 \vec{u} \cdot \vec{v}$.

I am having trouble figuring out if this is correct. I know i have scalars on the right hand side. On the left hand side I have the divergence of a vector dotted with a tensor, which I think will lead to a scalar.

Any help is most appreciated.

Thank you,
dakg
 
Last edited:
Physics news on Phys.org
Is it Green's First Identity that I need? Does it hold for vectors?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top