If H is a subgroup, then H is subgroup of normalizer

  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Subgroup
Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Show that if ##H## is a subgroup of ##G##, then ##H \le N_G (H)##

Homework Equations

The Attempt at a Solution


Essentially, we need to show that ##H \subseteq N_G (H)##; since they are both groups under the same binary operation the fact that they are subgroups will result. So let ##h \in H##. We want to show that ##h \in N_G (H)##, i.e. we want to show that ##hHh^{-1} = H##. But since the map ##\sigma_h (x) = hxh^{-1}## is automorphism an and thus a permutation from ##H## to ##H##, the set ##hHh^{-1}## is just a permuted version of ##H##, and so by set theory ##hHh^{-1} = H##, and ##h \in N_G (H)##.
 
Physics news on Phys.org
Isn't the point to show that ##H \trianglelefteq N_G(H)## or even better, that ##N_G(H)## is the largest subgroup with this property? For ##H \leq N_G(H)## you only need to write ##hHh^{-1} \subseteq H## which is trivial for (sub-)groups, no conjugation or automorphism needed, just the group operation.
 
  • Like
Likes Mr Davis 97
fresh_42 said:
Isn't the point to show that ##H \trianglelefteq N_G(H)## or even better, that ##N_G(H)## is the largest subgroup with this property? For ##H \leq N_G(H)## you only need to write ##hHh^{-1} \subseteq H## which is trivial for (sub-)groups, no conjugation or automorphism needed, just the group operation.
I'm just reading the problem word for word. I haven't learned about normal subgroups yet, so maybe that's why is seems trivial. But, one question. Why does ##hHh^{-1} \subseteq H## imply that ##H \le N_G (H)##?
 
Last edited:
##N_G(H)=\{\,g\in G\,:\,gHg^{-1}\subseteq H\,\}## per definition and this implies automatically that it contains ##H## because ##H## is a group.

A normal subgroup ##N## is one which has the property that ##gNg^{-1} \subseteq N## for all ##g\in G\,.## The clue is that normal subgroups are exactly those for which there can be defined a group structure on the set of equivalence classes ##\{\,[g]\,:\,[g]=gN\; , \;g \in G\,\}##. With an ordinary subgroup this cannot be done, with a normal subgroup it can (well definition is what fails with ordinary subgroups). The definition of ##N_G(H)## also shows that ##H## is normal in ##N_G(H)## - per construction, and this is why it is called normaizer of ##H## in ##G##. It's also the largest such subgroup for otherwise an element ##gNg^{-1}## would already be in ##N_G(H)##.
 
  • Like
Likes Mr Davis 97
fresh_42 said:
##N_G(H)=\{\,g\in G\,:\,gHg^{-1}\subseteq H\,\}## per definition and this implies automatically that it contains ##H## because ##H## is a group.

A normal subgroup ##N## is one which has the property that ##gNg^{-1} \subseteq N## for all ##g\in G\,.## The clue is that normal subgroups are exactly those for which there can be defined a group structure on the set of equivalence classes ##\{\,[g]\,:\,[g]=gN\; , \;g \in G\,\}##. With an ordinary subgroup this cannot be done, with a normal subgroup it can (well definition is what fails with ordinary subgroups). The definition of ##N_G(H)## also shows that ##H## is normal in ##N_G(H)## - per construction, and this is why it is called normaizer of ##H## in ##G##. It's also the largest such subgroup for otherwise an element ##gNg^{-1}## would already be in ##N_G(H)##.
Ah I see. Also, one thing, Dummit and Foote defines ##N_G (A) = \{ g \in G ~|~ gAg^{-1} = A \}##. Not sure why it is equality and not subset.
 
Mr Davis 97 said:
Ah I see. Also, one thing, Dummit and Foote defines ##N_G (A) = \{ g \in G ~|~ gAg^{-1} = A \}##. Not sure why it is equality and not subset.
This doesn't make a difference: ##gNg^{-1} \subseteq N \Longrightarrow N \subseteq g^{-1}Ng \subseteq N## as the relation is true for ##g## as well as ##g^{-1}##.
 
  • Like
Likes Mr Davis 97
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top