Image and kernel of iterated linear transformation intersect trivially

pugnet
Messages
2
Reaction score
0

Homework Statement


Given a linear transformation f:V -> V on a finite-dimensional vector space V, show that there is a postive integer m such that im(f^m) and ker(f^m) intersect trivially.


Homework Equations





The Attempt at a Solution


Observe that the image and kernel of a linear transformation f:V -> V are each subspaces of V.
The kernels of the successive iterations of the transformation form an increasing chain of subspaces.
The images of the successive iterations of the transformation form a decreasing chain of subspaces.
Since V is finite-dimensional, the chains of the kernels and images must eventually stabilize, say at m1 and m2 respectively. Let m be max{m1,m2}. So the kernel and image of the transformation are stable after m iterations.
Now let v be some element contained in both the image and the kernel of f^m.
This means that some element w in V with f^m(w) = v, and that f^m(v) = 0.

I need to obtain a contradiction, but I have been unsuccessful so far.

Thanks for your help.
 
Physics news on Phys.org
If the image is stabilized then f^m is a 1-1 map of Im(f^m)->Im(f^m). f^m(f^m(w))=f^m(v)=0. Seems like there is a contradiction there to me if you assume v is nonzero. What is it?
 
Last edited:
Thank you, Dick. I am kind of dumb, so it took me a while to see what you meant.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top