MHB Answer: Image Direct Sum & Linear Operator: Is Union Equal?

Fermat1
Messages
180
Reaction score
0
Given 2 subspaces and a linear operator, is the image of the direct sum of the subspaces equal to the union of the images under the operator?

Thanks
 
Physics news on Phys.org
Fermat said:
Given 2 subspaces and a linear operator, is the image of the direct sum of the subspaces equal to the union of the images under the operator?

Thanks
This is not true.

For a counterexample:
Let $V=\mathbb R^2$ and $X=\{(x,0):x\in\mathbb R\}$ and $Y=\{(0,y):y\in\mathbb R\}$.

Then $X$ and $Y$ are subspaces of $V$.

Let $I$ be the identity operator on $V$.

You can see that $I(X\oplus Y)\neq I(X)\cup I(Y)$.To make your statement true you can have:
Given 2 subspaces of a vector space $V$ and a linear operator on $V$, the image of the direct sum of the subspaces is equal to the sum of the images under the operator.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top