my, my, y'all seem to be a bunch of very smart peeps. by comparison, i feel rather stupid. but be that as it may, i do have thoughts about this particular subject (odd isn't it? as i am neither a physicist nor a mathematician).
at the risk of showing just how stupid i really am, i feel it necessary to point out something is happening. unless we're sharing some vivid mass hallucination (a possibility, i suppose, but a faint one), there really is a universe out there, doing its thing. and it appears that we understand "it" better than we used to.
a long time ago, when i was in high-school, we were told that F = ma. now, without being pedantic about this, just the existence of that equation means we need the notion of a multiplicative structure to even make heads or tails out of it. in fact, if one regards "a" as a vector-valued function of time (not so unusual, or so i hear), them boom! you're already into the world of 4-dimensional real vector spaces. i hear hilbert spaces are popular with quantum physicists. even if these are crude models of reality, they ARE models of reality. we expect something (knowledge of some sort) from them.
my point is, that mathematics, and the consistency of mathematical theories, has a direct impact on how we communicate those theories. the "TOE's", even if they are just symmetry groups (or n-branes, or whatever) to explain particle interactions, aren't abstract curiosities, but intended to communicate real information about the world as we think it actually may be. as long as we use mathematical theories as languages to describe physical systems, then mathematical theorems (in those theories) imply some actual knowledge about the real world. in just such a way, an undecideable statement, in a mathematical theory we take to be an accurate translation of the way the universe works, filters down to some kind of existential statement about reality.
in other words, if math truly is the appropriate language for describing science, then godel's theorem strongly suggests there are real facts about the universe we can never know. perhaps these facts aren't interesting, that's a subjective call. i find it a bit disturbing to contemplate that we would desire a model of the world that was accurately predictive of all desired information over long periods of time.
one hopes, but i must profess this is more a tenet of faith with me, that certain problems remain intractible, that subatomic interactions (or perhaps super-galactic ones) are complicated enough, that so many possibilities remain, that we never know our future. i hope that even if mr. godel's theorem isn't the relevant one, some other constraint stops us from fully understanding "it all".
several people have expressed the opinion, that such philosophical concerns are not any physicist's primary concern. perhaps not. and yet, i find it intriguing that the theory of relativity, to pick a random example, was born out just such kind of "fruitless" speculation...what kind of structure fits if things are actually like this, instead of that?
no one denies nowadays, the usefulness of high-speed computers in research, and yet i find it surprising that so many people consider very basic questions about the limits of computability to be irrelevant. the limits of our mathematical theories ought to be of some concern, as well, unless we wish to take the accumulated knowledge of the last 500 years, flush it down, and start over.
complete theories do exist, and it is possible that some axiomatic treatment of physics within such a theory is possible, but i doubt it. no one has come up with a logical system that can do what the real numbers do, but without all the fuss. and I'm fairly certain that the real numbers are categorical, if you have a system with their properties, you might as well call it the real numbers as well, and it automatically inherits a natural number object as a subclass, and it will be (mathematically) incomplete.
today's abstract mathematical curiosity may well be tomorrow's pressing concern. (some)physicists seem to (over the years) acquired the bad habit of quietly co-opting the utility of abstraction, while claiming to do the opposite.
i mean no disrespect to any of the posters here. if nothing else, you've all given me several hours of enjoyable reading, and much food for thought.