This is a reply to Sobeita’s question as to whether imaginary numbers have physical significance, and whether there are physical examples of imaginary numbers in nature.
Sobeita, I preface my remarks by saying that the labels “real” and “imaginary” in regards to numbers can, and often do, cause confusion among the uninitiated, because they are not descriptive of what they connote. Because of the confusion that it sometimes causes, the terminology is, in my opinion, unfortunate. As already pointed out in these replies, “imaginary” numbers are just as real as “real” numbers are, but they are a different kind of number.
Now for your question. The answer is yes, imaginary numbers have physical significance in physics and in the geometry of space-time, examples of which I will give in a moment. They have no physical significance in regards to money, however, because all money is “real”, mathematically speaking.
Before I get to the examples, let me give some background that is relevant to the more general question of the relation of mathematics to physical reality. There is a intimate relationship between the Natural Number System (a description of which I will give in a moment), space-time, and physics. Einstein believed that physics could ultimately be reduced to space-time geometry (and there is reason to believe that this is the case, although it has only partially been achieved to date--it is still a work in progress). And the Natural Number System, when applied to space-time with analytical geometry, describes space-time (they are isomorphic to each other, if you will). So it is not surprising to find that the numbers of the Natural Number System have physical significance in the geometry of space-time and in physics.
Mathematicians have extended the mathematical operations of the Natural Number System over the years. First there was addition, then multiplication, then raising to powers. They have also extended the numbers of the Natural Number System over the years (the number types). First there were counting numbers. Then with the discovery of negative numbers, counting numbers (positive whole numbers) were extended into integers; then with the discovery of fractional numbers, integers were extended into real numbers, then with the discovery of imaginary numbers, real numbers were extended into complex numbers; then with the discovery of hyper-imaginary numbers, complex numbers were extended into quaternions. And this successive extension of the Natural Number System continues to this day. It is a work in progress.
Now a curious thing has been noted in the literature: that the new numbers arising out of any extension of the natural number system can always be defined as ordered pairs of the preexisting numbers. For example, complex numbers, which are an extension of the real number system, can be defined as an ordered pair of real numbers. And the extension can be brought about with the following general procedure: beginning with a natural number system that is closed under its existing mathematical operations, its highest order mathematical binary operation is first extended (always defining the new operation as a repetition of the old; if the highest order mathematical operation is addition, for example, then its extension, which is multiplication, is defined as repeated addition), and then defining a new class of numbers as an ordered pair of the preexisting numbers, where mathematical operations on those numbers are defined in such a way that it will make the system closed under the inverse operations of the new extended operation while at the same time preserving the mathematical laws of the former operations for the former numbers. So the natural number system and its mathematical operations are extended together, for the extension of the mathematical operations requires the extension of the number system itself in order to preserve closure.
The extension of the natural number system under this general procedure yields a self consistent mathematical system that is unique. So you are not arbitrarily “inventing” new numbers, but rather “discovering” new numbers along with the properties that they must have in order to meet the conditions of closure laid out above, just as the laws of physics are not arbitrarily invented, but are rather discovered. It should also be noted that the natural number system extensions made to date were not necessarily derived in this manner historically, but they can be. Now can the natural number system be extended indefinitely in this manner, or will it eventually close--that is, will the extension of the mathematical operations of the system eventually result in an operation whose inverses are already closed under the preexisting numbers of the system, hence requiring no additional extension of the number system? I, myself, do not know. I am aware of nothing that has been discovered to date that would settle the question (but it may be possible to use a technique similar to finite induction to look ahead in these extensions to see whether there is any possibility of ultimate closure). Eventual closure of the procedure would imply that there are a limited number of physical dimensions and space-times in the universe.
Note: extending the natural number system by hand with this procedure tends to become more and more cumbersome the further the number system extensions go (because there are more and more pairs to manipulate, and more permutations to consider), but it should be practical to program modern day computers to quickly and automatically accomplish a series of extensions, which would enable us to make a quantum leap in the advancement of the natural number system and in the advancement of physics too, since new natural number system mathematics points to new physics. Perhaps some researcher who is experienced in computer programming will see this note and decide to take up this project.
The mathematical system derivable by this procedure is sometimes referred to in the literature as “The Natural Number System”, the Number System of Nature, for the numbers of this system (negative numbers, real numbers, complex numbers, quaternions, hyper-quaternions, and so on) have a physical meaning in physical space-time, and when the natural number system is applied to analytical geometry for the study of space-time, there is something like a one-to-one correspondence, if you will, between the properties of the Natural Number System and those of space-time. There is no mystery in this, by the way, it is not numerology or anything like that, it is because the fundamental laws of nature are determinate, and therefore require a determinate mathematical system for their complete description, determinate in the sense that its equations, written in terms of its mathematical operations, have solutions. [Note: some physicists today would argue that nature is indeterminate, but some very notable physicists down through the years, including Newton, Einstein, and de Broglie, believed that nature is determinate, and that the fundamental laws of physics are not statistical in nature, but are determinate]. The implication of the correspondence between the natural number system and physical space-time is that expansion of the number system automatically points to new physics, and visa versa.
The following sequential extensions have been made to the natural number system to date. The closure of the natural number system under the inverse of addition (subtraction) necessitated the “invention” of the negative numbers, giving rise to the integers, otherwise there would be no solution within the number system to the problem of subtracting a larger number from a smaller number. The closure of the natural number system under the inverse of multiplication (division) necessitated the “invention” of the fractional numbers, giving rise to the real numbers, otherwise there would be no solution within the number system to the problem of dividing a smaller number by a larger number. And the closure of the number system under the inverses of raising to powers (under the taking of roots for example) necessitated the “invention” of the imaginary numbers, giving rise to the complex numbers, otherwise there would be no solution within the number system to the problem of taking even roots of negative numbers. Lastly, the complex numbers were extended by Hamilton in 1843 to the quaternions (which are hyper-complex numbers that can be mathematically defined as an ordered pair of complex numbers). Although Hamilton did not do it this way, it can be shown that a new mathematical operation m * n can be defined as m appearing as a “factor” n times in a series of factors in which m is raised to the mth power a successive number of times, and that the quaternions make the mathematical system closed under the inverses of this new operation. Attempts have more recently been made to extend the quaternions to the hyper-quaternions, but those efforts have largely been speculative in nature and not guided by the procedure outlined here. [There are various clues that can guide one to correctly extending the natural number system without first extending the mathematical operations of the system, but when one does that, there are interesting new mathematical relations that are missed, very beautiful and useful relations, relations that have an analogue in the properties of space-time.].
The introduction of each of these strange, new numbers ignited a lengthy period of resistance and controversy, during which philosophical questions concerning their mathematical legitimacy, meaning, and physical significance were debated, and during which their use was often avoided if there were more conventional methods of arriving at the same conclusion, until the power and utility of these new numbers in mathematical analysis and in the physical world finally compelled mathematicians and physicists to accept them as legitimate numbers and legitimate extensions of the number system--forcing their general acceptance. We are presently still in the period of resistance and controversy against the last extension of the number system to be made, that of the quaternions. (Note: three dimensional vectors were invented by physicists towards the beginning of the resistance as an alternative to using quaternions--today, these three-vectors have been expanded to four dimensions, and are used by many physicists for the study of space-time and relativity physics; these four-vectors, which are better suited to the study of relativity physics than three-vectors, are more nearly like quaternions, but are still not identical to quaternions).
Having given this background, I finish by giving examples of the physical significance of imaginary numbers. Analytical geometry allows us to form a one-to-one correspondence, so to speak, between the natural number system and the geometry of space-time. A complex number, for example, can be used to represent position in two dimensional space-time: the real number part of the complex number represents temporal position (or the component of position in time), while the imaginary part represents spatial position (or the component of position in space). Quaternions, which are ordered pairs of complex numbers, and which contain one real term and three imaginary terms, can be used to represent position in four dimensional space-time. The imaginary basis of the quaternion (or that of the complex number in the case of two dimensional space-time) identify the physical dimensions of space-time, and positions of coordinate points along those dimensions--that is their physical significance when applied to the geometry of space-time. Multiplying a number by a real number produces a change in position or scale in space-time, while multiplying by a imaginary number produces a type of rotation in space-time, and that is the physical meaning of multiplying by a imaginary number.
Various other fundamental quantities in physics, aside from position in space-time, are also four dimensional and can be designated by quaternions (or by complex numbers in two dimensional space-time). Momentum, for example, when it is defined as the time derivative of the moment of mass, is actually four dimensional, having a time component that is represented by a real number, and three spatial components that are represented by three imaginary numbers (or if there is only one spatial component, by the imaginary term of a complex number). Here the real number has the physical meaning of energy (which is the time component of four-momentum), while the imaginary numbers have the physical meaning of momentum (which are the spatial components of four-momentum). If we are talking about physical fields, potential fields, for example, also have four components. The time component of the electromagnetic four-potential, for example, is the electric (or scalar) potential, and the spatial components of the electromagnetic four-potential are the three spatial components of the vector potential (or if there is only one spatial dimension, the real term of a complex number is the electric (or scalar) potential, and the imaginary term of the complex number is the vector potential). So in this case, the imaginary term in the complex number is physically the vector potential, and its real term is physically the scalar potential. To give one final example, force, when defined as the time derivative of the four-potential, is also four dimensional: its time component, which is the component of force in the time dimension, is a real number, and its three spatial components, which are the components of force in the three spatial dimensions, are imaginary numbers.
Each of the natural numbers generated by the natural number system extensions have a physical meaning in space-time (and therefore in physics). The sign of signed numbers, for example, identify direction along a line in space-time relative to the origin. The real numbers fill in the gaps between the integral positions along the line so that it forms a continuum, so their physical meaning pertains to the physical continuum of space-time. And the imaginary basis of complex numbers and quaternions (hyper-complex numbers) identify spatial dimensions of space-time, while the real basis identifies the time dimension.