Implicit Utility Function Equations: Solving for Partial Derivatives

  • Thread starter Thread starter christine1986
  • Start date Start date
christine1986
Messages
1
Reaction score
0

Homework Statement



Assuming that the equation F(U, x1, x2, ..., xn) = 0 implicity defines a utility function U=f(x1, x2, ..., xn):

Find the expressions for \partialU/\partialx2, \partialU/\partialxn, \partialx3/\partialx2, and \partialx4/\partialxn.


Homework Equations





The Attempt at a Solution



I read the textbook to solve this problem but still cannot figure out how to solve it.
Please help me.
 
Physics news on Phys.org
If U is some function U(\vec x), then what is

\frac{\partial F(U;\vec x)}{\partial x_2}

?

Hint: Apply the chain rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top