Increase Entropy in Sealed, Thermally Insulated Container

  • Thread starter Thread starter LocationX
  • Start date Start date
  • Tags Tags
    Entropy increase
LocationX
Messages
141
Reaction score
0
A sealed and thermally insulated container of total volume V is divided into two equal volumes by an impermeable wall. The left half of the container is initially occupied by n moles of an ideal
gas at temperature T. Which of the following gives the change in entropy of the system when
the wall is suddenly removed and the gas expands to fill the entire volume?

thermo is a very weak subject for me... any help is appreciated

I know that entropy is s=k*g where g is the number of accessible states, but I'm not sure where to go from here
 
Physics news on Phys.org
\Delta S(T,P)=\frac{3}{2}Nk ln( \frac{T_2}{T_1} ) + Nk ln( \frac{V_2}{V_1} )

This is the state equation for the entropy in terms of temperature and volume. Since the container is thermally insulated, T2=T1 and the first term drops out since ln(1)=0. Since V2 > V1, the second term is positive and the entropy of the system will INCREASE.
 
where did you get this equation from? Is this a standard equation?
 
Look under the entropy section here:http://en.wikipedia.org/wiki/Ideal_gas"
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top