Indefinite Integration by exchange of variables

Asphyxiated
Messages
263
Reaction score
0

Homework Statement



\int \frac {2+z^{-1}}{z^{2}} dz

The Attempt at a Solution



Let:

u = 2 +z^{-1}

du = -z^{-2} dz

dz = -z^{2} du

so now its

\int \frac {u}{z^{2}} (-z^{2}) du

\int \frac {(u)(-z^{2})}{z^{2}} du

\int (u)(-1) du

and then the antiderivative of u*(-1) is

-\frac{1}{2}(2+z^{-1})^{2} + C

right? The answer in the book is:

-2z^{-1}-\frac{1}{2}z^{-2} + C

I don't see anywhere that I went wrong...
 
Physics news on Phys.org
expand your parenthesis and put the -2 that results in with the constant. You have the same answer, just in a different form.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top