Indeterminant limit (radical in denominator)

  • Thread starter Thread starter furiouspoodle
  • Start date Start date
  • Tags Tags
    Limit
furiouspoodle
Messages
3
Reaction score
0

Homework Statement



\lim_{x \to {4}}\frac{4 - x^2}{2 - \sqrt{x}}

Homework Equations


The Attempt at a Solution



\lim_{x \to {4}}\frac{4 - x^2}{2 - \sqrt{x}} \cdot \frac{2 + \sqrt{x}}{2 + \sqrt{x}}

= \frac{x(4-x)(2-\sqrt{x})}{(4-x)} = x(2-\sqrt{x})

this equals zero, but is the limit indeterminate at this point?
 
Last edited:
Physics news on Phys.org
I think you expanded the numerator incorrectly
 
thanks! it was a missed minus sign.
 
4-x^2 = (2-x)*(2+x)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top