Is the Induced Weighted Matrix Norm Equal to WAW^-1?

pyroknife
Messages
611
Reaction score
4

Homework Statement


The weighted vector norm is defined as
##||x||_W = ||Wx||##.
W is an invertible matrix.

The induced weighted matrix norm is induced by the above vector norm and is written as:
##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W}##
A is a matrix.

Need to show ##||A||_W = ||WAW^{-1}||##

Homework Equations

The Attempt at a Solution


##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W} = sup_{x\neq 0} \frac{||WAx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}Wx||}{||Wx||}##

For an induced norm we know that:
##\frac{||WAW^{-1}Wx||}{||Wx||} \leq \frac{||WAW^{-1}||||Wx||}{||Wx||} = ||WAW^{-1}||##Here is where I am lost. I already have gotten the expression into the form desired, but I do not know how to make the connection between ##sup_{x\neq0}## and the ##\leq##. My thought is that we are taking the supremum of ##\frac{||Ax||_W}{||x||_W}##, so it's maximum possible value is ##||WAW^{-1}||##
and thus
##||A||_W=||WAW^{-1}||##
Is this the right logic?
 
Physics news on Phys.org
The inequality holds for all ##x \neq 0## and therefore for the supremum, too.
 
fresh_42 said:
The inequality holds for all ##x \neq 0## and therefore for the supremum, too.
Yes I understand this, but I don't think this answers my question? Or maybe I do not actually understand?
 
pyroknife said:
##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W} = sup_{x\neq 0} \frac{||WAx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}Wx||}{||Wx||}##

For an induced norm we know that:
##\frac{||WAW^{-1}Wx||}{||Wx||} \leq \frac{||WAW^{-1}||||Wx||}{||Wx||} = ||WAW^{-1}||##

Putting it together you already have:

##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W} = sup_{x\neq 0} \frac{||WAx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}Wx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}Wx||}{||Wx||}##

## \leq sup_{x\neq 0} \frac{||WAW^{-1}||||Wx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}||||Wx||}{||Wx||} = sup_{x\neq 0} ||WAW^{-1}|| = ||WAW^{-1}||##

At least I cannot see why this shouldn't hold.
 
fresh_42 said:
Putting it together you already have:

##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W} = sup_{x\neq 0} \frac{||WAx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}Wx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}Wx||}{||Wx||}##

## \leq sup_{x\neq 0} \frac{||WAW^{-1}||||Wx||}{||Wx||} = sup_{x\neq 0} \frac{||WAW^{-1}||||Wx||}{||Wx||} = sup_{x\neq 0} ||WAW^{-1}|| = ||WAW^{-1}||##

At least I cannot see why this shouldn't hold.
Yes. I don't see anything wrong with those steps either, but I am not sure how to eventually get to the answer
##||A||_W = ||WAW^{-1}||##. Right now we have it in the form ##||A||_W \leq ||WAW^{-1}||##
 
Right. I've forgotten the other direction. Give me some time to think about it.
 
fresh_42 said:
Right. I've forgotten the other direction. Give me some time to think about it.
Thanks. I think it is some property of the "supremum" that I may be missing.
 
If we have ##||A|| = sup_{x\neq 0} \frac{||Ax||}{||x||}## which is true for the matrix norm induced by the vector norm, then it's easy (I think).

##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W} = sup_{x\neq 0} \frac{||WAx||}{||Wx||} = sup_{y\neq 0} \frac{||WAW^{-1}y||}{||y||} = ||WAW^{-1}||##
 
fresh_42 said:
If we have ##||A|| = sup_{x\neq 0} \frac{||Ax||}{||x||}## which is true for the matrix norm induced by the vector norm, then it's easy (I think).

##||A||_W = sup_{x\neq 0} \frac{||Ax||_W}{||x||_W} = sup_{x\neq 0} \frac{||WAx||}{||Wx||} = sup_{y\neq 0} \frac{||WAW^{-1}y||}{||y||} = ||WAW^{-1}||##
Hmm, I do not understand the step
##sup_{y\neq0}\frac{||WAW^{-1}y||}{||y||} = ||WAW^{-1}||##

Could you explain the equality?
 
  • #10
pyroknife said:
Hmm, I do not understand the step
##sup_{y\neq0}\frac{||WAW^{-1}y||}{||y||} = ||WAW^{-1}||##

Could you explain the equality?
The same as in the assumption that ##||A|| = sup_{x\neq 0}{\frac{||Ax||}{||x||}}## only with ##||WAW^{-1}||## instead of ##||A||## and ##y## instead of ##x##.
Only point is whether this is right for the matrix norm given to you but usually it holds.
 
Back
Top