Induction proof of nth derivative

Bob Ho
Messages
18
Reaction score
0
Show by induction that the nth derivative f(n)(x) of;

f(x)=sqrt(1-x)

is

f(n)(x)= -\frac{(2n)!}{4^{n}n!(2n-1)}*(1-x)(1/2)-n

for n \geq 1.
 
Physics news on Phys.org
For n=1 it works.

For n=k-1 assume that it works. Write n=kth derivative as the derivative of the expression for k-1, i.e d(f(k-1)(x))/(dx). Taking the derivative the result follows.
 
Homework questions should be posted in the homework section of this forum.

Also, you must show an attempt at a solution before we can help you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top