Infinite Degree Polynomials: Describing by Roots

foxjwill
Messages
350
Reaction score
0

Homework Statement


Is it possible to describe some infinite degree polynomials by their roots in a way analagous to finite degree polynomials?


Homework Equations





The Attempt at a Solution



I know that, since not all infinite degree polynomials have roots (e.g. the power series representation of e^x), it would not be possible to do so for all of them. But what about polynomials like the power series of sin(x)? I was thinking maybe

\prod^\infty_{n=0} \left ( x^2 - n^2\pi^2 \right )
 
Physics news on Phys.org
Is it possible to describe some infinite degree polynomials...
There's no such thing as an infinite degree polynomial. I presume you mean a power series.

If (the analtyic continuation) of your power series is actually meromorphic, then there is a general factorization theorem. See:

http://en.wikipedia.org/wiki/Infinite_product
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top