Infinite well potential - changed bottom

Kidiz
Messages
21
Reaction score
4

Homework Statement



The bottom of an infinite well is changed to have the shape

$$V(x) = \epsilon \sin {\dfrac{\pi x}{b}}, 0 \le x \le b$$

Calculate the energy shifts for all the excited states to first order in ##\epsilon##. Note that the well originally had ##V(x) = 0## for ##0 \le x \le b## and ##V = \infty ## elsewhere.

Homework Equations

/Attempt at a solution[/B]

I know I should use ##<\Psi _n | H_1 | \Psi_n>##, and that ##H_1 = \epsilon \sin {\dfrac{\pi x}{b}}##. If I had ##\Psi _n## all I to do was integrate between ##0## and ##b##. However, I don't have ##\Psi _n##. For the "normal" potential well, I know that ##\Psi _ n = \sqrt{2/b} \sin {\dfrac{n \pi x}{b}}##. However, that is not the case in this exercise.

Any suggestions?
 
Physics news on Phys.org
You say: "However, that is not the case in this exercise." Why is it not? That is, what would the wave functions be if epsilon was zero?
 
DEvens said:
You say: "However, that is not the case in this exercise." Why is it not? That is, what would the wave functions be if epsilon was zero?

For epsilon = 0, we'd have no potential inside the box, so the solution would be ##\Psi _ n = \sqrt{2/b} \sin {\dfrac{n \pi x}{b}}##. I say that it's not the same because there's a space (below the potential line) in which the particle can not be. Is it the same though?
 
Kidiz said:
I say that it's not the same because there's a space (below the potential line) in which the particle can not be.

Um... What? It's a finite potential value inside an infinite square well. What do you mean "in which the particle can not be"? Where can't it be? And why not?
 
DEvens said:
Um... What? It's a finite potential value inside an infinite square well. What do you mean "in which the particle can not be"? Where can't it be? And why not?

I'm imagining something like this: http://sketchtoy.com/64403013

I said that the particle couldn't be in C, only in A. But now that I think about it, I don't see why it could not be in C.
 
Um... You do realize that your graph is plotting the value of the potential, right? It does not tell you where the particle is. It does not make sense what you said. The particle is neither in A nor C. It's not on that graph.

The particle has a wave function. You have to work out that wave function. Or at least, you are asked to work it out to first order in epsilon. You are being asked to do a perturbation calculation. You had most of it in your first post.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top