Inifinity limit with natural log

AlexandraMarie112
Messages
16
Reaction score
1

Homework Statement


Limx--> ∞ Ln(x^2-1) -Ln(2x^2+3)

Homework Equations

The Attempt at a Solution


Ln(x^2-1)/(2x^2+3)

Then I divided the top and bottom by x^2 so in the end I got (1/2).

Is this right?
 
Physics news on Phys.org
AlexandraMarie112 said:

Homework Statement


Limx--> ∞ Ln(x^2-1) -Ln(2x^2+3)

Homework Equations

The Attempt at a Solution


Ln(x^2-1)/(2x^2+3)

Then I divided the top and bottom by x^2 so in the end I got (1/2).

Is this right?
What happened to the ##\ln##?
 
  • Like
Likes Mastermind01
Is this what you did? :

##\lim_{n\rightarrow +\infty} {\ln {(x^2 - 1)} - \ln{(2x^2+3)}}##

## = \lim_{n\rightarrow +\infty} {\ln ({\frac{x^2 - 1}{2x^2+3}})}#### = {\ln {\lim_{n\rightarrow +\infty}(\frac{1 - \frac{1}{x^2}}{2+\frac{3}{x^2}}})}##

You got the limit of the inside part as ##\frac{1}{2}## you need to take its ##\ln## to get the right answer.
 
Mastermind01 said:
Is this what you did? :

##\lim_{n\rightarrow +\infty} {\ln {(x^2 - 1)} - \ln{(2x^2+3)}}##

## = \lim_{n\rightarrow +\infty} {\ln ({\frac{x^2 - 1}{2x^2+3}})}#### = {\ln {\lim_{n\rightarrow +\infty}(\frac{1 - \frac{1}{x^2}}{2+\frac{3}{x^2}}})}##

You got the limit of the inside part as ##\frac{1}{2}## you need to take its ##\ln## to get the right answer.
Yes that's what I did. So my final answer then should be Ln(1/2) ?
 
AlexandraMarie112 said:
Yes that's what I did. So my final answer then should be Ln(1/2) ?
Right, or -ln(2)
 
  • Like
Likes Mastermind01 and AlexandraMarie112
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top