Inifinity limit with natural log

AlexandraMarie112
Messages
16
Reaction score
1

Homework Statement


Limx--> ∞ Ln(x^2-1) -Ln(2x^2+3)

Homework Equations

The Attempt at a Solution


Ln(x^2-1)/(2x^2+3)

Then I divided the top and bottom by x^2 so in the end I got (1/2).

Is this right?
 
Physics news on Phys.org
AlexandraMarie112 said:

Homework Statement


Limx--> ∞ Ln(x^2-1) -Ln(2x^2+3)

Homework Equations

The Attempt at a Solution


Ln(x^2-1)/(2x^2+3)

Then I divided the top and bottom by x^2 so in the end I got (1/2).

Is this right?
What happened to the ##\ln##?
 
  • Like
Likes Mastermind01
Is this what you did? :

##\lim_{n\rightarrow +\infty} {\ln {(x^2 - 1)} - \ln{(2x^2+3)}}##

## = \lim_{n\rightarrow +\infty} {\ln ({\frac{x^2 - 1}{2x^2+3}})}#### = {\ln {\lim_{n\rightarrow +\infty}(\frac{1 - \frac{1}{x^2}}{2+\frac{3}{x^2}}})}##

You got the limit of the inside part as ##\frac{1}{2}## you need to take its ##\ln## to get the right answer.
 
Mastermind01 said:
Is this what you did? :

##\lim_{n\rightarrow +\infty} {\ln {(x^2 - 1)} - \ln{(2x^2+3)}}##

## = \lim_{n\rightarrow +\infty} {\ln ({\frac{x^2 - 1}{2x^2+3}})}#### = {\ln {\lim_{n\rightarrow +\infty}(\frac{1 - \frac{1}{x^2}}{2+\frac{3}{x^2}}})}##

You got the limit of the inside part as ##\frac{1}{2}## you need to take its ##\ln## to get the right answer.
Yes that's what I did. So my final answer then should be Ln(1/2) ?
 
AlexandraMarie112 said:
Yes that's what I did. So my final answer then should be Ln(1/2) ?
Right, or -ln(2)
 
  • Like
Likes Mastermind01 and AlexandraMarie112
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top