Integral + Brainfart | Solve Integral Problem

  • Thread starter Thread starter James889
  • Start date Start date
  • Tags Tags
    Integral
James889
Messages
190
Reaction score
1
Hai,

I have the following Integral i can't get right:
\int_{-8}^8\frac{(6e^{4x}-2)^2}{e^{4x}}

After i squared the bracket i end up with~~\frac{36e^{8x}-24e^{8x}+4}{e^{4x}}

So, after dividing thru by e^{4x} i have:

36e^{4x}-24e^{4x}+\frac{4}{e^{4x}}

Integrating gives:
9e^{4x} - 6e^{4x} +4~ln(e^{4x})

I must be doing something wrong because i end up with the wrong answer =/
But what?
 
Physics news on Phys.org
\int 36e^{4x}-24e^{4x}+\frac{4}{e^{4x}}\,dx=\int 36e^{4x}-24e^{4x}+4e^{-4x}}\,dx
You skipped the u substitution for the last term.
 
The third integration becomes
Int(4*e^-4x) = - e^-4x.
 
The second term in line 2 should be - 24e^{4x}. Also, the integral of 4e^{ - 4x} is not 4\ln (e^{4x} )
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top