Integral ∫dr/√((1/(R+r))-(1/R))

  • Thread starter Thread starter armin.hodaie
  • Start date Start date
  • Tags Tags
    Integral
armin.hodaie
Messages
13
Reaction score
0

Homework Statement



∫dr/√((1/(R+r))-(1/R))

Homework Equations


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
Is the problem \int \frac{dr}{\sqrt{(\frac{1}{R}+r)-(\frac{1}{R})}}?

If it is, try to simplify the denominator before trying to take the integral.
 
no,i type it wrong
∫dr/√((1/(R+r))-(1/R))
 
armin.hodaie said:

Homework Statement



∫dr/√((1/(R+r))-(1/R))

Homework Equations





The Attempt at a Solution


So, is your integral
\int \frac{dr}{\sqrt{\frac{1}{R+r}-\frac{1}{R}}} ?
If so, re-write it by first expressing
\frac{1}{R+r}-\frac{1}{R}
as a simple rational expression. You should end up with an integrand of the form
\sqrt{\frac{ar+b}{cr+d}}.

RGV
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
9
Views
2K
Replies
10
Views
1K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
9
Views
1K
Back
Top