songoku
- 2,467
- 382
Homework Statement
Find using substitution x=\sin \theta
\int _0^{0.5}\frac{x}{\sqrt{1-x^2}}dx
Homework Equations
integration
The Attempt at a Solution
\int _0^{0.5}\frac{x}{\sqrt{1-x^2}}dx
=\int_0^{\frac{\pi}{6}}\sin \theta\;d\theta
=1-\frac{1}{2}\sqrt{3}
What I want to ask is about changing the upper bound of the integral.
For x = 0.5 :
0.5 = \sin \theta
Here I choose \theta = \frac{\pi}{6}. But what if I choose \theta = \frac{5}{6}\pi\;??
So, the integral :
=\int_0^{\frac{5}{6}\pi}\sin \theta\;d\theta
=1+\frac{1}{2}\sqrt{3}
Thanks