Integral involving square root and exp

nicnicman
Messages
132
Reaction score
0

Homework Statement



\int\frac{dx}{\sqrt{e^{x} + 1}}

Homework Equations


Using u-substitution


The Attempt at a Solution



Let u = \sqrt{e^{x} + 1} \Rightarrow u^{2} - 1 = e^{x}
Then, du = \frac{e^{x} dx}{2\sqrt{e^{x} + 1}} \Rightarrow dx = \frac{2u du}{u^{2}-1}

So, \int\frac{dx}{\sqrt{e^{x} + 1}} = \int\frac{2u du}{u(u^{2}-1)}

But, I'm stuck at this point. I think I want to break it up into two simpler integrals, but I'm not sure how to do this. Any suggestions would be greatly appreciated!
 
Physics news on Phys.org
nicnicman said:

Homework Statement



\int\frac{dx}{\sqrt{e^{x} + 1}}

Homework Equations


Using u-substitution


The Attempt at a Solution



Let u = \sqrt{e^{x} + 1} \Rightarrow u^{2} - 1 = e^{x}
Then, du = \frac{e^{x} dx}{2\sqrt{e^{x} + 1}} \Rightarrow dx = \frac{2u du}{u^{2}-1}

So, \int\frac{dx}{\sqrt{e^{x} + 1}} = \int\frac{2u du}{u(u^{2}-1)}

But, I'm stuck at this point. I think I want to break it up into two simpler integrals, but I'm not sure how to do this. Any suggestions would be greatly appreciated!

Partial fractions is what you want. Factor the denominator.
 
Okay.

So, \int\frac{dx}{\sqrt{e^{x} + 1}} = \int\frac{2u du}{u(u^{2}-1)} = \int\frac{2du}{(u+1)(u-1)}

And now I'm stuck again.
 
nicnicman said:
Okay.

So, \int\frac{dx}{\sqrt{e^{x} + 1}} = \int\frac{2u du}{u(u^{2}-1)} = \int\frac{2du}{(u+1)(u-1)}

And now I'm stuck again.

Partial fractions! ##\frac{1}{(u+1)(u-1)}=\frac{A}{u+1}+\frac{B}{u-1}## for some constants A and B. Find those constants.
 
Okay. I think I've got it.

So, \int\frac{dx}{\sqrt{e^{x} + 1}} = \int\frac{2u du}{u(u^{2}-1)} = \int\frac{2du}{(u+1)(u-1)} = \int\frac{du}{u-1} - \int\frac{du}{u-1} = ln|u-1| - ln|u+1| = ln\frac{|u-1|}{|u+1|} where u = \sqrt{e^{x}+1}

= ln\frac{\sqrt{e^{x}+1}-1}{\sqrt{e^{x}+1}+1}

Thank you for all your help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top