Integral of 1/(sqrt(x^2 *ln(x)) from e to e^2 No idea.

Click For Summary
The integral of 1/(sqrt(x^2 * ln(x))) from e to e^2 can be simplified by recognizing that for x > 0, √(x^2 ln(x)) equals x√(ln(x)). A change of variables to ln(x) = y helps in transforming the integral into a more manageable form. The resulting integral becomes ∫[1/(x√(ln(x)))]dx, which can be solved using the substitution method. The final evaluation yields the result of 2√2 - 2. This approach clarifies the initial confusion and leads to the correct answer.
Lo.Lee.Ta.
Messages
217
Reaction score
0
Integral of 1/(sqrt(x^2 *ln(x)) from e to e^2... No idea. :(

1. ∫e to e^2 of (1/(√x2ln(x)))dx


2. So confused! :(

Okay... So I tried something!

∫e to e^2 of [-2/3(x2*ln(x))-3/2 * 1/(x + 2xln(x))] |e to e^2


I got the 1/(x+2xln(x)) because I was trying to think of some way to cancel out the
x+2xln(x) that results from the chain rule...

Don't think this is right... If not, what am I supposed to do here? :confused:
 
Physics news on Phys.org


Lo.Lee.Ta. said:
1. ∫e to e^2 of (1/(√x2ln(x)))dx


2. So confused! :(

Okay... So I tried something!

∫e to e^2 of [-2/3(x2*ln(x))-3/2 * 1/(x + 2xln(x))] |e to e^2


I got the 1/(x+2xln(x)) because I was trying to think of some way to cancel out the
x+2xln(x) that results from the chain rule...

Don't think this is right... If not, what am I supposed to do here? :confused:

For x > 0 we have ##\sqrt{x^2 \ln(x)} = x \sqrt{\ln(x)},## because ##\sqrt{x^2} = x## for x > 0. Change variables to ln(x) = y.
 


Oh. I think I know what you mean. It's not as hard as I thought it would be!

∫e to e^2 of [1/(xsqrt(ln(x)))]

u = ln(x)
du= (1/x)dx

∫e to e^2 [1/(sqrt(u))]du

= ∫ u^(-1/2) du = 2(u)^1/2 |e to e^2

= 2(ln(e^2))^1/2 - 2(ln(e))^1/2

= 2(2)^1/2 - 2(1)^1/2

= 2sqrt(2) - 2 <----Should be answer!

Thanks, Ray Vickson! :D
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K