Integral of dx/(x^2-1): Quick Help and Explanation | Learn Calculus"

  • Thread starter Thread starter darthxepher
  • Start date Start date
  • Tags Tags
    Integral
darthxepher
Messages
56
Reaction score
0
Hey what is the integral of

dx/x^2-1
 
Physics news on Phys.org
Do you mean 1/(x^2- 1)= 1/(x-1)(x+1)? Use "partial fractions".
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top