Integral of f(z) dz Around C1 & C2: Complex Math Solutions

squenshl
Messages
468
Reaction score
4

Homework Statement


We know sin(z) has zeros at integral multiples of pi. Let f(z) = z2/sin2(z)
How do I find the integral of f(z) dz around C1 (C1 is the circle |z| = 1 orientated anti-clockwise) and how do I find the integral of f(z) dz around C2 (C2 is the circle |z - pi| = 1 orientated anti-clockwise).

Homework Equations





The Attempt at a Solution


Do I use the Cauchy Integral formula for these integrals.
If not, how would I go about doing these.
 
Physics news on Phys.org
how about thinking residues?
 
I got 1 as my integral.
 
No. 1 is my value of f(z) (using L'Hopitals rule and the fact that f(z) has a removable singularity at z = 0 so this function is analytic).
My limits of integration are 0 and 2pi so my integral is 2pi.
 
No again. We use the residue theorem
integral = 2 pi i (sum of the residues)
= 2 pi i (1)
= 2 pi i
and for the next integral I got 4 pi^2 i
 
Last edited:
If your function is analytic how can it have a residue at 0?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top