Integral of product of binomials

  • Thread starter Thread starter harimakenji
  • Start date Start date
  • Tags Tags
    Integral Product
harimakenji
Messages
89
Reaction score
0

Homework Statement


integral (4-3x^2)(6x^2-16x-1)^3 dx


Homework Equations





The Attempt at a Solution


Is there quicker way besides expanding the cubic?

Thank you very much for the reply
 
Physics news on Phys.org


I think that's your best bet.
 


mmmboh said:
I think that's your best bet.

OK. Thank you very much for your help
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top