Integral of sin(lnx) + (lnx)^3/2 w.r.t. x

sapiental
Messages
110
Reaction score
0
g(x) = integral 0 to lnx (sin(t)+t^3/2))dt

find d/dx g(x):

let u = lnx


= sin(u) + u^3/2 du/dx
= sin(lnx)(1/x) + x^3/2(1/x)

Thanks
 
Last edited:
Physics news on Phys.org
What is your question?
 
I believe what you need to examine is the fundamental theorem of calculus, part 2. Check your text.

edit: in that section, you'll probably see some examples where they find the derivative of the integral of some function...
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top