Integral of square root - Conflicting solutions

BeautyT
Messages
2
Reaction score
0
Can a kind person explain to me why I appear to have two conflicting solutions to:

\int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}

Solution 1 : Standard trigonometric substitution: x=\sin\theta

Integral becomes

\int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}=\int^{\sin^{-1}\frac{1}{\sqrt{2}}}_{\sin^{-1}0}\frac{d\theta}{\cos\theta}\sqrt{1-\sin^2\theta}=\int^{\pi/4}_0d\theta=\frac{\pi}{4}

Solution 2 : Integration by parts gives:

\int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}=\left.x\sqrt{1-x^2}\right|^{\frac{1}{\sqrt{2}}}_0 + \int^{\frac{1}{\sqrt{2}}}_0dx\frac{x^2}{\sqrt{1-x^2}}=\frac{1}{2}+\int^{\frac{1}{\sqrt{2}}}_0dx \frac{x^2}{\sqrt{1-x^2}}

Adding to the right hand side:

0=\int^{\frac{1}{\sqrt{2}}}_0dx\frac{1}{\sqrt{1-x^2}}-\int^{\frac{1}{\sqrt{2}}}_0dx\frac{1}{\sqrt{1-x^2}}

we get:

\int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}=\frac{1}{2} - \int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}+\int^{\frac{1}{\sqrt{2}}}_0dx\frac{1}{\sqrt{1-x^2}}

or rearranging:

\int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}=\frac{1}{4}+\frac{1}{2}\int^{\frac{1}{\sqrt{2}}}_0dx \frac{1}{\sqrt{1-x^2}}

Finally since:

\sin^{-1} x=\int^x_0\frac{dz}{\sqrt{1-z^2}}\quad |x|\leq1

we find:

\int^{\frac{1}{\sqrt{2}}}_0dx\sqrt{1-x^2}=\frac{1}{4}+\frac{1}{2}\sin^{-1}\frac{1}{\sqrt{2}}=\frac{1}{4}+\frac{\pi}{8}

Any illuminating comments are appreciated.

Regards,
Beauty
 
Physics news on Phys.org
Ok forget it, my first integral is completely wrong.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top