wotanub
- 230
- 8
Homework Statement
This is from Cahill's Physical Mathematics. Exercise 5.23.
For a \gt 0 and b^{2} – 4ac \lt 0, use a ghost contour to do the integral
\int^{\infty}_{-\infty} \frac{1}{ax^{2}+bx+c} \mathrm{d}x
Homework Equations
Use contour integration and the residue theorem.
The Attempt at a Solution
Mathematica is giving a different result than I got.
It gives \int^{\infty}_{-\infty} \frac{1}{ax^{2}+bx+c} \mathrm{d}x = \frac{2\pi}{\sqrt{4ac-b^{2}}}
My solution:
The roots of the polynomial are
x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}
For convenience, write
x = \alpha \pm \mathrm{i}\beta
where \alpha \equiv \frac{-b}{2a}, \beta \equiv \frac{-\mathrm{i}}{2a}\sqrt{b^{2}-4ac} \gt 0
My contour \mathcal{C} will be the real axis, and a large CCW semicircle that encloses the entire UHP. If z = R \mathrm{e}^{\mathrm{i}\theta} then the integral along the arc trivially vanishes as R→\infty
\int^{\infty}_{-\infty} \frac{1}{ax^{2}+bx+c} \mathrm{d}x
= \oint_{\mathcal{C}} \frac{1}{az^{2}+bz+c} \mathrm{d}z
= \oint_{\mathcal{C}} \frac{1}{(z-(\alpha - \mathrm{i}\beta))(z-(\alpha + \mathrm{i}\beta))} \mathrm{d}z
= \mathrm{Res}(\frac{1}{(z-(\alpha - \mathrm{i}\beta))(z-(\alpha + \mathrm{i}\beta))}, z = \alpha + \mathrm{i}\beta), since this is the only pole in the UHP
= 2\pi\mathrm{i}\frac{1}{\alpha + \mathrm{i}\beta - (\alpha - \mathrm{i}\beta)}
= 2 \pi\mathrm{i}\frac{1}{2\mathrm{i}\beta}
= \frac{\pi}{\beta}
= \frac{2a\mathrm{i}\pi}{\sqrt{b^{2}-4ac}}
= \frac{2\pi a}{\sqrt{4ac-b^{2}}}
So I've got an extra factor of a here? Mistakes?
My Mathematica code is
Code:
Integrate[1/(a*x^2 + b*x + c), {x, -Infinity, Infinity}, Assumptions -> {a > 0, 4*a*c > b^2}]