How to find the constant in this indefinite integration?

  • #1
106
7
Homework Statement:
Find constant of a indefinite integration for classical mechanics
Relevant Equations:
$\int$
$$x(t)=\int \dot{x}(t)\mathrm dt=vt+c$$

That's what I did. But, book says

$$x(t)=\int \dot{x}(t)\mathrm dt=x_0+v_0 t+ \frac{F_0}{2m}t^2$$

Seems like, $$x_0 + \dfrac{a_0}{2}t^2$$ is constant. How to find constant is equal to what?
 

Answers and Replies

  • #2
15,565
13,677
To find the value of the constant, you will need a initial condition, often ##x(0)=0## or in general ##x(t_0)=x_0##. Then insert it in your equation and solve for ##c##.

The reason is the following:
A differential equation has - depending on c - many solutions. Each solution corresponds to a flow through a vector field which is defined by the differential equation. The initial condition tells us where to start the flow, such that it will be the unique one that solves the equation plus its initial condition.

skPZv.png

ref.: https://mathematica.stackexchange.com/questions/22190/why-are-these-flow-lines-cut-short
 
  • #3
Doc Al
Mentor
45,214
1,551
What is ##\dot{x}(t)## as a function of t? Don't assume it's a constant.
 
  • #5
106
7
To find the value of the constant, you will need a initial condition, often x(0)=0 or in general x(t0)=c0. Then insert it in your equation and solve for c.
If I try to do this way then, I get c=-vt

0=vt+c
c=-vt
 
  • #6
Doc Al
Mentor
45,214
1,551
is velocity... It's obviously constant [as far as I know]
Why do you assume that? Your book didn't!
 
  • #8
Doc Al
Mentor
45,214
1,551
What my book didn't do?
It looks to me as if the problem assumes a constant acceleration, not a constant velocity.
 
  • #9
15,565
13,677
If I try to do this way then, I get c=-vt

0=vt+c
c=-vt
If you set ##t=0## then you get ##c=x(0)## in the first equation, and ##x(0)=x_0## in the second.

Initial conditions could as well be at any time and of any value, e.g. ##x(5)=7## but it is usually ##x(0)## we are interested in because it makes the equations easier to solve for ##c##. It is also where the name comes from: initial as in starting point which is usually ##t=0.##
 
  • Like
Likes Istiakshovon
  • #10
106
7
If you set ##t=0## then you get ##c=x(0)## in the first equation, and ##x(0)=x_0## in the second.

Initial conditions could as well be at any time and of any value, e.g. ##x(5)=7## but it is usually ##x(0)## we are interested in because it makes the equations easier to solve for ##c##. It is also where the name comes from: initial as in starting point which is usually ##t=0.##
So, I can find $$x(t)=vt+x(0)$$ but, my book assumes that $$x(t)=x(0)+vt+\frac{at^2}{2}$$
 
  • #11
Doc Al
Mentor
45,214
1,551
So, I can find $$x(t)=vt+x(0)$$ but, my book assumes that $$x(t)=x(0)+vt+\frac{at^2}{2}$$
You assume that the velocity is constant, but your book does not.
 
  • #12
106
7
You assume that the velocity is constant, but your book does not.
How? If I integrate velocity than, I get position not acceleration... 🤔
 
  • #13
Doc Al
Mentor
45,214
1,551
How? If I integrate velocity than, I get position not acceleration... 🤔
You're trying to find the position.

Do this: Start with a constant acceleration. Then integrate to find the velocity, and then integrate again to find the position.
 
  • Informative
Likes Istiakshovon
  • #14
15,565
13,677
So, I can find $$x(t)=vt+x(0)$$ but, my book assumes that $$x(t)=x(0)+vt+\frac{at^2}{2}$$
So? Your book says ##x(0)=v\cdot 0 +x(0)## in the first and ##x(0)=x(0) + v\cdot 0 +\frac{a\cdot 0^2}{2}=x(0)## in the second equation. But what does it say in the problem statement before ##c## occurs?

Without initial condition ##x(t_0)=vt_0+x_0## you get infinitely many solution from ##\dot x =v## and with initial condition only one solution: ##x(t)=v\cdot t +x_0##.

And in order to solve ##\ddot x = a## you need even two initial conditions because you integrate twice and each integral has a ##c##.
 
  • Like
Likes Istiakshovon
  • #15
Doc Al
Mentor
45,214
1,551
I got confused... $$\dot{x}=\int \ddot{x} \mathrm dt=\dot{x} t +c$$
That's a good start. Now solve for that constant. Looks like they assume the velocity is v0 when t = 0.
 
  • #16
106
7
You're trying to find the position.

Do this: Start with a constant acceleration. Then integrate to find the velocity, and then integrate again to find the position.
Ohh! Thanks... got it....

$$\dot{x} (t)=\int \ddot{x} t dt=\ddot{x}t+c$$
$$\dot{x}(t)=\ddot{x}t+\dot{x}(0)$$
$$x(t)=\int \dot{x} (t) dt$$
$$=\int \ddot{x}t+\dot{x_0} dt$$
$$=\dot{x_0}t+\frac{\ddot{x}}{2}t^2+c$$
 
  • #17
Doc Al
Mentor
45,214
1,551
Ohh! Thanks... got it....

$$\dot{x} (t)=\int \ddot{x} t dt=\ddot{x}t+c$$
$$\dot{x}(t)=\ddot{x}t+\dot{x}(0)$$
$$x(t)=\int \dot{x} (t) dt$$
$$=\int \ddot{x}t+\dot{x_0} dt$$
$$=\dot{x_0}t+\frac{\ddot{x}}{2}t^2+c$$
OK, much better!

And it looks like your book assumed a constant acceleration (because of a constant force) equal to F0/m.
 
  • Like
Likes Istiakshovon
  • #18
106
7
OK, much better!

And it looks like your book assumed a constant acceleration (because of a constant force) equal to F0/m.
Hum..!
 
  • #20
332
191
I don't understand the confusion. We start with a constant force along the x-axis, ##F_0##. Newton's law says,
$$
F=ma=m\frac{d^2x}{dt^2}=F_0
$$
$$
m\frac{d^2x}{dt^2}=m\frac{d\dot x }{dt}
$$
$$
\frac{d\dot x }{dt}=\frac{F_0}{m}
$$
Assuming ##t_0=0## we integrate
$$
\int_{\dot {x}_0}^{\dot x}d\dot {x}'=\int_0^t\frac{F_0}{m}dt'
$$
with the primes indicating dummy variables of integration.
$$
\dot x - \dot {x}_0=\frac{F_0}{m}t
$$
$$
\dot {x}_0=v_0
$$
$$
\dot x=\frac{dx}{dt}
$$
$$
\frac{dx}{dt}=
v_0+\frac{F_0}{m}t
$$
Integrate again
$$
\int_{x_0}^x dx'=\int_{0}^t (v_0+\frac{F_0}{m}t')dt'
$$
$$
x=x_0 + v_0t+ \frac{F_0t^2}{2m}
$$
Does this help or am I missing something?
 
  • #21
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
37,000
7,217
We start with a constant force along the x-axis
How do you know that? I don't see any links in this thread to the original question.
 

Related Threads on How to find the constant in this indefinite integration?

  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
11
Views
2K
  • Last Post
Replies
13
Views
595
Replies
4
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
1
Views
663
  • Last Post
Replies
4
Views
711
  • Last Post
Replies
1
Views
841
  • Last Post
Replies
1
Views
852
  • Last Post
Replies
4
Views
3K
Top