Integral Trouble? Get Help Here! | Cliowa

cliowa
Messages
190
Reaction score
0
Dear community

I'm trying to get a grip on this integral:
\int \frac{\sqrt{1-x}}{\sqrt{x}-1} dx.
I tried substituting x=\sin^{2}(u), which leaves me (standing) with
\int \frac{\sin(u)\cos^{2}(u)}{\sin(u)-1} du.

But I just can't solve it, no matter which way I try.
I would be thankful for every kind of hint/explanation.
Best regards...Cliowa
 
Physics news on Phys.org
Well,.when nothing else works, make the s=tan(u/2) substitution:
\cos(u)=\cos^{2}\frac{u}{2}-\sin^{2}\frac{u}{2}=\cos^{2}(\frac{u}{2})(1-s^{2})=\frac{(1-s^{2})}{\sec^{2}\frac{u}{2}}=\frac{(1-s^{2})}{1+s^{2}}
\frac{\sin(u)}{\sin(u)-1}=\frac{2\sin\frac{u}{2}\cos\frac{u}{2}}{2\sin\frac{u}{2}\cos\frac{u}{2}-\cos^{2}\frac{u}{2}-\sin^{2}\frac{u}{2}}=\frac{2s}{2s-s^{2}-1}=-\frac{2s}{(s-1)^{2}}

u=2\arctan(s)\to{du}=\frac{2ds}{1+s^{2}}

Collecting, we get to evaluate the integral:
-\int\frac{4s(1+s)^{2}}{(1+s^{2})^{3}}ds
 
Last edited:
Before introducing trigonometry, I'd substitute y = \sqrt{1-x}.
 
cliowa said:
...I tried substituting x=\sin^{2}(u), which leaves me (standing) with
\int \frac{\sin(u)\cos^{2}(u)}{\sin(u)-1} du...
You are forgetting a factor of 2. It should read:
2 \int \frac{\sin(u)\cos^{2}(u)}{\sin(u)-1} du instead.
Now by using the Pythagorean Theorem, we have:
cos2x = 1 - sin2x = -(sin x - 1) (sin x + 1)
So you'll have:
2 \int \frac{\sin(u)\cos^{2}(u)}{\sin(u)-1} du = -2 \int \sin u (\sin u + 1) du.
You can go from here, right? :)
 
That was a bit simpler than mine, VietDao..:frown:
 
Thank you very much, arildno, VietDao29 for your great help.
I figured out the rest on my own.
And, although s=tan(u/2) is a bit more complicated I think it's always good to have to ways to go.
Best regards...Cliowa
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top