MHB Integral with floor and ceil function

  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Function Integral
Click For Summary
The discussion revolves around evaluating the integral of the floor function involving logarithms and ceiling functions for integers greater than one. It establishes that for \( x > 1 \), the expression simplifies to zero, leading to the integral being computed over the interval from 0 to 1. The integrand's behavior is analyzed to find where it remains constant, resulting in a series of inequalities that define the limits of integration. The final result of the integral is shown to be \( \frac{1}{\alpha - 1} \). The complexity of the integral is acknowledged, highlighting its challenging nature.
Krizalid1
Messages
106
Reaction score
0
Here's an integral I love:

For each integer $\alpha>1,$ compute $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx} .$
 
Mathematics news on Phys.org
For $x>1$, $\displaystyle 1 \le \frac{\lceil x \rceil}{x} < 2 \implies \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 1 \implies \log_{a} \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor =0$

So $\displaystyle \int_{0}^{\infty} \left\lfloor \log_{a} \Big\lfloor \frac{\lceil x \rceil}{x} \Big\rfloor \right\rfloor \ dx = \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{\lceil x \rceil}{x} \Big\rfloor \right\rfloor \ dx = \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor \ dx$

Now find where the integrand is constant.

$\displaystyle \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor = k $

$ \displaystyle k \le \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor < k+1 $

$ \displaystyle a^{k} \le \Big\lfloor \frac{1}{x} \Big\rfloor < a^{k+1} $

$ \displaystyle \displaystyle a^{k} \le \frac{1}{x} < a^{k+1} $ since $a$ is a positive integer

$\displaystyle \implies \frac{1}{a^{k+1}} < x \le \frac{1}{a^{k}} $

$ \displaystyle \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor \ dx = \sum_{k=1}^{\infty} \int_{\frac{1}{a^{k+1}}}^{\frac{1}{a^{k}}} k \ dx $

$ \displaystyle =\sum^{\infty}_{k=1}k\left(\frac{1}{a^{k}}-\frac{1}{a^{k+1}}\right) =\sum^{\infty}_{k=1}k\left(\frac{1}{a}\right)^{k}-\sum^{\infty}_{k=1}k\left(\frac{1}{a}\right)^{k+1} $

$ \displaystyle =\frac{\frac{1}{a}}{(1-\frac{1}{a})^{2}}-\frac{(\frac{1}{a})^{2}}{(1-\frac{1}{a})^{2}}=\frac{1}{a-1} $
 
Yes that's correct.
 
Krizalid said:
Here's an integral I love:

For each integer $\alpha>1,$ compute $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx} .$
this one is very hard
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K