Integral with floor and ceil function

  • Context: MHB 
  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Function Integral
Click For Summary

Discussion Overview

The discussion centers around the evaluation of an integral involving the floor and ceiling functions, specifically the integral $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx}$ for integers $\alpha > 1$. The scope includes mathematical reasoning and exploration of the properties of the functions involved.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents the integral and initiates the discussion.
  • Another participant analyzes the integral for $x > 1$, concluding that $\left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 1$ leads to $\log_{a} \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 0$.
  • The same participant derives conditions for the integrand to be constant, leading to inequalities involving $k$ and $x$.
  • Further calculations are provided, resulting in a summation that simplifies to $\frac{1}{a-1}$.
  • Another participant confirms the correctness of the previous calculations.
  • A different participant reiterates the integral, suggesting it is a challenging problem.

Areas of Agreement / Disagreement

There is agreement on the correctness of the calculations presented by one participant, but the overall discussion remains exploratory with no consensus on the integral's evaluation as a whole.

Contextual Notes

The discussion involves assumptions about the behavior of the floor and ceiling functions and their implications for the integral, which may not be fully resolved.

Krizalid1
Messages
106
Reaction score
0
Here's an integral I love:

For each integer $\alpha>1,$ compute $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx} .$
 
Physics news on Phys.org
For $x>1$, $\displaystyle 1 \le \frac{\lceil x \rceil}{x} < 2 \implies \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 1 \implies \log_{a} \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor =0$

So $\displaystyle \int_{0}^{\infty} \left\lfloor \log_{a} \Big\lfloor \frac{\lceil x \rceil}{x} \Big\rfloor \right\rfloor \ dx = \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{\lceil x \rceil}{x} \Big\rfloor \right\rfloor \ dx = \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor \ dx$

Now find where the integrand is constant.

$\displaystyle \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor = k $

$ \displaystyle k \le \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor < k+1 $

$ \displaystyle a^{k} \le \Big\lfloor \frac{1}{x} \Big\rfloor < a^{k+1} $

$ \displaystyle \displaystyle a^{k} \le \frac{1}{x} < a^{k+1} $ since $a$ is a positive integer

$\displaystyle \implies \frac{1}{a^{k+1}} < x \le \frac{1}{a^{k}} $

$ \displaystyle \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor \ dx = \sum_{k=1}^{\infty} \int_{\frac{1}{a^{k+1}}}^{\frac{1}{a^{k}}} k \ dx $

$ \displaystyle =\sum^{\infty}_{k=1}k\left(\frac{1}{a^{k}}-\frac{1}{a^{k+1}}\right) =\sum^{\infty}_{k=1}k\left(\frac{1}{a}\right)^{k}-\sum^{\infty}_{k=1}k\left(\frac{1}{a}\right)^{k+1} $

$ \displaystyle =\frac{\frac{1}{a}}{(1-\frac{1}{a})^{2}}-\frac{(\frac{1}{a})^{2}}{(1-\frac{1}{a})^{2}}=\frac{1}{a-1} $
 
Yes that's correct.
 
Krizalid said:
Here's an integral I love:

For each integer $\alpha>1,$ compute $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx} .$
this one is very hard
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K