Integral with floor and ceil function

  • Context: MHB 
  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Function Integral
Click For Summary
SUMMARY

The integral discussed is defined as $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx}$ for integers $\alpha > 1$. The analysis shows that for $x > 1$, the expression simplifies to $\left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 1$, leading to $\log_{a} \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 0$. The integral is evaluated over the interval $(0, 1)$, yielding a final result of $\frac{1}{a-1}$. This conclusion is confirmed as correct by the participants in the discussion.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with logarithmic functions, specifically $\log_\alpha$
  • Knowledge of the floor function and ceiling function
  • Basic series summation techniques
NEXT STEPS
  • Study properties of the floor and ceiling functions in mathematical analysis
  • Explore advanced techniques in evaluating improper integrals
  • Learn about series convergence and divergence, particularly in relation to summation
  • Investigate the applications of logarithmic integrals in number theory
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in advanced integral evaluation techniques and number theory applications.

Krizalid1
Messages
106
Reaction score
0
Here's an integral I love:

For each integer $\alpha>1,$ compute $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx} .$
 
Physics news on Phys.org
For $x>1$, $\displaystyle 1 \le \frac{\lceil x \rceil}{x} < 2 \implies \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor = 1 \implies \log_{a} \left\lfloor \frac{\lceil x \rceil}{x} \right\rfloor =0$

So $\displaystyle \int_{0}^{\infty} \left\lfloor \log_{a} \Big\lfloor \frac{\lceil x \rceil}{x} \Big\rfloor \right\rfloor \ dx = \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{\lceil x \rceil}{x} \Big\rfloor \right\rfloor \ dx = \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor \ dx$

Now find where the integrand is constant.

$\displaystyle \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor = k $

$ \displaystyle k \le \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor < k+1 $

$ \displaystyle a^{k} \le \Big\lfloor \frac{1}{x} \Big\rfloor < a^{k+1} $

$ \displaystyle \displaystyle a^{k} \le \frac{1}{x} < a^{k+1} $ since $a$ is a positive integer

$\displaystyle \implies \frac{1}{a^{k+1}} < x \le \frac{1}{a^{k}} $

$ \displaystyle \int_{0}^{1} \left\lfloor \log_{a} \Big\lfloor \frac{1}{x} \Big\rfloor \right\rfloor \ dx = \sum_{k=1}^{\infty} \int_{\frac{1}{a^{k+1}}}^{\frac{1}{a^{k}}} k \ dx $

$ \displaystyle =\sum^{\infty}_{k=1}k\left(\frac{1}{a^{k}}-\frac{1}{a^{k+1}}\right) =\sum^{\infty}_{k=1}k\left(\frac{1}{a}\right)^{k}-\sum^{\infty}_{k=1}k\left(\frac{1}{a}\right)^{k+1} $

$ \displaystyle =\frac{\frac{1}{a}}{(1-\frac{1}{a})^{2}}-\frac{(\frac{1}{a})^{2}}{(1-\frac{1}{a})^{2}}=\frac{1}{a-1} $
 
Yes that's correct.
 
Krizalid said:
Here's an integral I love:

For each integer $\alpha>1,$ compute $\displaystyle \int_0^\infty {\left\lfloor {{{\log }_\alpha }\left\lfloor {\frac{{\left\lceil x \right\rceil }}{x}} \right\rfloor } \right\rfloor \,dx} .$
this one is very hard
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K