- 6,221
- 31
Integral with sq. root in it...again
Find..
\int x^\frac{3}{2}\sqrt{1+x} dx
Well I used the fact that:
\sqrt{1+x}=\sum_{n=0} ^\infty \frac{(-1)^n(2n!)x^n}{(1-2n)(n!)^24^n}
and well I just multiplied by x^\frac{3}{2}
so I integrated:
\int \sum_{n=0} ^\infty \frac{(-1)^n(2n!)x^(n+\frac{3}{2}}{(1-2n)(n!)^24^n}
and got \sum_{n=0} ^\infty \frac{(-1)^n(2n!)x^(n+\frac{5}{2}}{(1-2n)(n!)^24^n\frac{5}{2}}
\frac{2x^\frac{5}{2}}{5}\sqrt{1+x} which is wrong because if i differentiate it I get an extra term in it
Homework Statement
Find..
\int x^\frac{3}{2}\sqrt{1+x} dx
Homework Equations
The Attempt at a Solution
Well I used the fact that:
\sqrt{1+x}=\sum_{n=0} ^\infty \frac{(-1)^n(2n!)x^n}{(1-2n)(n!)^24^n}
and well I just multiplied by x^\frac{3}{2}
so I integrated:
\int \sum_{n=0} ^\infty \frac{(-1)^n(2n!)x^(n+\frac{3}{2}}{(1-2n)(n!)^24^n}
and got \sum_{n=0} ^\infty \frac{(-1)^n(2n!)x^(n+\frac{5}{2}}{(1-2n)(n!)^24^n\frac{5}{2}}
\frac{2x^\frac{5}{2}}{5}\sqrt{1+x} which is wrong because if i differentiate it I get an extra term in it