The bit of the problem that I'm working on:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]6\int\frac{dx}{x^2-x+1}[/tex]

My work:

[tex]=6\int\frac{dx}{(x^2-x+\frac{1}{4})+1-\frac{3}{4}}[/tex]

[tex]=6\int\frac{dx}{(x-\frac{1}{2})^2+\sqrt{\frac{3}{4}}^2}[/tex]

let [tex]x-\frac{1}{2}=\sqrt{\frac{3}{4}}\tan\theta[/tex]

so [tex]dx=\sqrt{\frac{3}{4}}\sec^2\theta d\theta[/tex]

[tex]=6\int\frac{\sqrt{\frac{3}{4}}sec^2\theta d\theta}{\frac{3}{4}+\frac{3}{4}tan^2\theta}[/tex]

[tex]=(6)(\frac{\sqrt{3}}{2})(\frac{4}{3})\int\frac{sec^2\theta d\theta}{1+tan^2\theta}[/tex]

[tex]=4\sqrt{3}\int d\theta[/tex]

[tex]=4\sqrt{3}\theta[/tex]

My answer:

[tex]=4\sqrt{3}\arctan{\frac{2x-1}{\sqrt{3}}}[/tex]

An integrator's answer:

[tex]\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}[/tex]

I don't think the two answers differ by a constant, but I can't find my error.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral with trig substitution

**Physics Forums | Science Articles, Homework Help, Discussion**