Matuku
- 12
- 0
Homework Statement
Find,
\int \left( \frac{1}{x} - \frac{1}{x^2} \right)e^x ~dx
Homework Equations
None
The Attempt at a Solution
I tried integrating by parts,
\]\int \left( \frac{1}{x} - \frac{1}{x^2} \right)e^x ~dx\\<br /> Let ~\frac{dv}{dx}=\left( \frac{1}{x} - \frac{1}{x^2} \right), and ~u=e^x.\\<br /> \therefore v=\ln{x} + \frac{1}{x}, and ~\frac{du}{dx}=e^x\\<br /> \therefore \int \left( \frac{1}{x} - \frac{1}{x^2} \right)e^x ~dx<br /> = e^x(\ln{x} + \frac{1}{x}) - \int{ e^x(\ln{x} + \frac{1}{x})}~dx\[
But I can't see what to do now; the next integral is even messier than the first!