Integrate \frac{1}{x}-\frac{1}{x^2}e^x

  • Thread starter Thread starter Matuku
  • Start date Start date
  • Tags Tags
    Integral
Matuku
Messages
12
Reaction score
0

Homework Statement


Find,
\int \left( \frac{1}{x} - \frac{1}{x^2} \right)e^x ~dx

Homework Equations


None

The Attempt at a Solution


I tried integrating by parts,
\]\int \left( \frac{1}{x} - \frac{1}{x^2} \right)e^x ~dx\\<br /> Let ~\frac{dv}{dx}=\left( \frac{1}{x} - \frac{1}{x^2} \right), and ~u=e^x.\\<br /> \therefore v=\ln{x} + \frac{1}{x}, and ~\frac{du}{dx}=e^x\\<br /> \therefore \int \left( \frac{1}{x} - \frac{1}{x^2} \right)e^x ~dx<br /> = e^x(\ln{x} + \frac{1}{x}) - \int{ e^x(\ln{x} + \frac{1}{x})}~dx\[

But I can't see what to do now; the next integral is even messier than the first!
 
Physics news on Phys.org
I think that it won't work here, you need to develop e^x power series expansion.
 
First break the integral apart thus:

\int \left( \frac{1}{x} - \frac{1}{x^2} \right) e^x\ \text{d}x = \int \frac{1}{x} e^x \ \text{d}x - \int \frac{1}{x^2} e^x \ \text{d}x

Now, integrate the first of the two resulting integrals by parts, letting u=\frac{1}{x} and \text{d}v=e^x\ \text{d}x. You should get a very convenient cancellation.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top