Integrate $\int_{-B}^{B}\frac{\sqrt{B^2 - y^2}}{1-y} dy$

  • Thread starter Thread starter deftist
  • Start date Start date
  • Tags Tags
    Integration
deftist
Messages
1
Reaction score
0

Homework Statement



\int_{-B}^{B}\frac{\sqrt{B^2 - y^2}}{1-y} dy

Homework Equations





The Attempt at a Solution



I tried to get rid of the square root thing, so I started by:

y = B sin \theta,
dy = B cos \theta d\theta,

then the integral above becomes:

B^2 \int_{0}^{\pi} \frac{\sin^2 \theta d\theta}{1-Bcos\theta}d\theta.

Now my question is, how to integrate this out?
 
Physics news on Phys.org
Hi deftist!

The trick is to do the subtitution

t=\tan(\theta /2)

and to apply the formula's

\sin(\theta)=\frac{2t}{1+t^2},~~\cos(\theta)=\frac{1-t^2}{1+t^2},~~\tan(\theta)=\frac{2t}{1-t^2}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top