Integrate sinx cosx dx: Find Solution

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Integration
Natasha1
Messages
494
Reaction score
9
I have been asked to find the integral sinx cox dx using the identity sin2x = 2sinxcosx

My work...

integral of sinx cox dx

= 1/2 integral of 2 sinx cos dx

= 1/2 integral of sin 2x dx

u = 2x
du = 2

so 1/2 * 1/2 of integral of sin u du

= 1/4 [-cos u] + c
= - 1/4 cos 2x + c is this correct?
 
Physics news on Phys.org
Quite so! :smile:
 
Yes, it is, except you should say du = 2 dx instead of just 2.
 
0rthodontist said:
Yes, it is, except you should say du = 2 dx instead of just 2.

Great. So if we know look at the following integral x sin x cos x dx

My work...

Let u = x

du/dx = 1

dv/dx = sin x cos x

v = -1/4 cos 2x (from above)

so = -1/4 x cos x - integral of -1/4 cos 2x dx

= -1/4 x cos 2x + 1/4 integral of cos 2x dx

Let u = 2x

du/dx = 2

so = -1/4 x cos 2x + 1/4 * 1/2 integral of cos u du

= -1/4 x cos 2x + 1/8 sin 2x + c is this correct?
 
Yes it is, as can be verified by differentiating your expression.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top